Neural Architecture Search (NAS)
Automated process for designing optimal neural network architectures using machine learning techniques.
What is Neural Architecture Search (NAS)?
Neural Architecture Search (NAS) is an automated machine learning (AutoML) technique that aims to discover optimal neural network architectures for specific tasks. Instead of relying on human expertise to design neural networks, NAS uses algorithms to explore the space of possible architectures and find the most effective ones based on performance metrics.
Key Characteristics
- Automated Design: Eliminates manual architecture engineering
- Search Space: Defines possible architectures to explore
- Search Strategy: Algorithm for exploring the search space
- Performance Estimation: Method for evaluating architecture quality
- Transferability: Ability to generalize across tasks
- Efficiency: Computational requirements for search
- Optimization: Multi-objective optimization (accuracy, latency, memory)
- Scalability: Ability to handle complex architectures
NAS Components
graph TD
A[Search Space] --> B[Search Strategy]
B --> C[Performance Estimation]
C --> D[Optimal Architecture]
D --> E[Training & Deployment]
subgraph NAS Process
B
C
end
Core Approaches
Search Spaces
# Example of NAS search space definition
class NAS_SearchSpace:
def __init__(self):
# Operation types
self.operations = [
'conv_3x3', 'conv_5x5', 'conv_7x7',
'depthwise_conv_3x3', 'depthwise_conv_5x5',
'max_pool_3x3', 'avg_pool_3x3',
'identity', 'zero'
]
# Connection patterns
self.connection_patterns = [
'skip_connection', 'dense_connection',
'series_connection', 'parallel_connection'
]
# Architecture parameters
self.num_layers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.num_channels = [16, 32, 64, 128, 256, 512]
self.strides = [1, 2]
def generate_random_architecture(self):
"""Generate a random architecture from the search space"""
import random
# Random number of layers
num_layers = random.choice(self.num_layers)
# Generate layer configurations
architecture = []
for i in range(num_layers):
layer = {
'operation': random.choice(self.operations),
'channels': random.choice(self.num_channels),
'stride': random.choice(self.strides),
'connection': random.choice(self.connection_patterns)
}
architecture.append(layer)
return architecture
def get_search_space_size(self):
"""Calculate the size of the search space"""
# This is a simplified calculation
# Actual search space can be much larger
return (len(self.operations) *
len(self.num_channels) *
len(self.strides) *
len(self.connection_patterns)) ** max(self.num_layers)
Search Strategies
| Strategy | Description | Pros | Cons |
|---|---|---|---|
| Random Search | Randomly sample architectures | Simple, parallelizable | Inefficient, no learning |
| Grid Search | Exhaustively search predefined options | Thorough, systematic | Computationally expensive |
| Bayesian Optimization | Uses probabilistic models to guide search | Efficient, sample-efficient | Complex to implement |
| Reinforcement Learning | Uses RL agent to generate architectures | Can handle complex spaces | Computationally expensive |
| Evolutionary Methods | Uses genetic algorithms to evolve architectures | Parallelizable, robust | Requires many evaluations |
| Gradient-Based | Uses differentiable architecture search | Efficient, fast | Limited to differentiable spaces |
| Multi-Fidelity | Uses different fidelities for evaluation | Efficient, cost-effective | Complex to implement |
# Reinforcement Learning search strategy example
class RL_NAS_Strategy:
def __init__(self, search_space, controller_hidden_size=100):
self.search_space = search_space
self.controller = self._build_controller(controller_hidden_size)
def _build_controller(self, hidden_size):
"""Build the RL controller"""
import torch.nn as nn
# Simple LSTM controller
controller = nn.LSTM(
input_size=len(self.search_space.operations) +
len(self.search_space.num_channels) +
len(self.search_space.strides) +
len(self.search_space.connection_patterns),
hidden_size=hidden_size,
num_layers=2
)
# Output layers for each decision
self.op_head = nn.Linear(hidden_size, len(self.search_space.operations))
self.ch_head = nn.Linear(hidden_size, len(self.search_space.num_channels))
self.st_head = nn.Linear(hidden_size, len(self.search_space.strides))
self.co_head = nn.Linear(hidden_size, len(self.search_space.connection_patterns))
return controller
def sample_architecture(self):
"""Sample an architecture using the RL controller"""
import torch
# Initialize hidden state
hidden = (torch.zeros(2, 1, 100), torch.zeros(2, 1, 100))
# Sample architecture
architecture = []
for i in range(max(self.search_space.num_layers)):
# Get controller output
output, hidden = self.controller(torch.zeros(1, 1, 1), hidden)
# Sample operations
op_probs = torch.softmax(self.op_head(output), dim=-1)
ch_probs = torch.softmax(self.ch_head(output), dim=-1)
st_probs = torch.softmax(self.st_head(output), dim=-1)
co_probs = torch.softmax(self.co_head(output), dim=-1)
# Select with highest probability
op = torch.argmax(op_probs).item()
ch = torch.argmax(ch_probs).item()
st = torch.argmax(st_probs).item()
co = torch.argmax(co_probs).item()
# Create layer
layer = {
'operation': self.search_space.operations[op],
'channels': self.search_space.num_channels[ch],
'stride': self.search_space.strides[st],
'connection': self.search_space.connection_patterns[co]
}
architecture.append(layer)
return architecture
def update_controller(self, rewards):
"""Update the controller based on rewards"""
# Implementation would use policy gradient or similar
pass
Performance Estimation
# Performance estimation strategies
class PerformanceEstimator:
def __init__(self, strategy='weight_sharing'):
self.strategy = strategy
self.supernet = None
def estimate(self, architecture, dataset, epochs=5):
"""Estimate the performance of an architecture"""
if self.strategy == 'full_training':
return self._full_training(architecture, dataset, epochs)
elif self.strategy == 'weight_sharing':
return self._weight_sharing(architecture, dataset)
elif self.strategy == 'proxy_task':
return self._proxy_task(architecture, dataset)
elif self.strategy == 'learning_curve':
return self._learning_curve(architecture, dataset)
else:
raise ValueError(f"Unknown strategy: {self.strategy}")
def _full_training(self, architecture, dataset, epochs):
"""Full training of the architecture"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
# Build model from architecture
model = self._build_model(architecture)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
# Create data loader
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Train for a few epochs
for epoch in range(epochs):
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Evaluate on validation set
val_loader = DataLoader(dataset, batch_size=32, shuffle=False)
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in val_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
def _weight_sharing(self, architecture, dataset):
"""Weight sharing performance estimation"""
if self.supernet is None:
self._build_supernet()
# Sample sub-network from supernet
sub_network = self._sample_sub_network(architecture)
# Evaluate sub-network
val_loader = DataLoader(dataset, batch_size=32, shuffle=False)
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in val_loader:
outputs = sub_network(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
def _build_supernet(self):
"""Build a supernet that contains all possible operations"""
# Implementation would create a network with all possible operations
# and allow sampling sub-networks
pass
def _sample_sub_network(self, architecture):
"""Sample a sub-network from the supernet based on architecture"""
# Implementation would activate only the operations specified in architecture
pass
def _proxy_task(self, architecture, dataset):
"""Proxy task performance estimation"""
# Use a simpler task or smaller dataset for faster evaluation
pass
def _learning_curve(self, architecture, dataset):
"""Learning curve extrapolation"""
# Train for a few epochs and extrapolate final performance
pass
def _build_model(self, architecture):
"""Build a model from architecture specification"""
import torch.nn as nn
layers = []
in_channels = 3 # Assuming RGB input
for layer in architecture:
if layer['operation'].startswith('conv'):
# Add convolutional layer
kernel_size = int(layer['operation'].split('_')[-1][0])
if 'depthwise' in layer['operation']:
layers.append(nn.Conv2d(
in_channels, in_channels,
kernel_size=kernel_size,
stride=layer['stride'],
padding=kernel_size//2,
groups=in_channels
))
else:
layers.append(nn.Conv2d(
in_channels, layer['channels'],
kernel_size=kernel_size,
stride=layer['stride'],
padding=kernel_size//2
))
in_channels = layer['channels']
layers.append(nn.BatchNorm2d(in_channels))
layers.append(nn.ReLU())
elif layer['operation'].startswith('pool'):
# Add pooling layer
pool_type = layer['operation'].split('_')[0]
kernel_size = int(layer['operation'].split('_')[-1][0])
if pool_type == 'max':
layers.append(nn.MaxPool2d(kernel_size, stride=layer['stride']))
else:
layers.append(nn.AvgPool2d(kernel_size, stride=layer['stride']))
elif layer['operation'] == 'identity':
# Identity operation - do nothing
pass
elif layer['operation'] == 'zero':
# Zero operation - skip this layer
continue
# Add final layers
layers.append(nn.AdaptiveAvgPool2d(1))
layers.append(nn.Flatten())
layers.append(nn.Linear(in_channels, 10)) # Assuming 10 classes
return nn.Sequential(*layers)
NAS Methods
Reinforcement Learning NAS
# Complete RL-based NAS implementation
class RL_NAS:
def __init__(self, search_space, num_episodes=1000, controller_hidden_size=100):
self.search_space = search_space
self.num_episodes = num_episodes
self.controller = self._build_controller(controller_hidden_size)
self.performance_estimator = PerformanceEstimator('weight_sharing')
def _build_controller(self, hidden_size):
"""Build the RL controller"""
import torch.nn as nn
# LSTM controller
self.controller = nn.LSTM(
input_size=1, # Dummy input
hidden_size=hidden_size,
num_layers=2
)
# Output heads for different decisions
self.op_head = nn.Linear(hidden_size, len(self.search_space.operations))
self.ch_head = nn.Linear(hidden_size, len(self.search_space.num_channels))
self.st_head = nn.Linear(hidden_size, len(self.search_space.strides))
self.co_head = nn.Linear(hidden_size, len(self.search_space.connection_patterns))
self.num_layers_head = nn.Linear(hidden_size, len(self.search_space.num_layers))
return self.controller
def sample_architecture(self, hidden):
"""Sample an architecture using the controller"""
import torch
# Sample number of layers
num_layers_logits = self.num_layers_head(hidden[0][-1])
num_layers_probs = torch.softmax(num_layers_logits, dim=-1)
num_layers = torch.multinomial(num_layers_probs, 1).item()
num_layers = self.search_space.num_layers[num_layers]
# Sample each layer
architecture = []
for i in range(num_layers):
# Sample operation
op_logits = self.op_head(hidden[0][-1])
op_probs = torch.softmax(op_logits, dim=-1)
op = torch.multinomial(op_probs, 1).item()
# Sample channels
ch_logits = self.ch_head(hidden[0][-1])
ch_probs = torch.softmax(ch_logits, dim=-1)
ch = torch.multinomial(ch_probs, 1).item()
# Sample stride
st_logits = self.st_head(hidden[0][-1])
st_probs = torch.softmax(st_logits, dim=-1)
st = torch.multinomial(st_probs, 1).item()
# Sample connection
co_logits = self.co_head(hidden[0][-1])
co_probs = torch.softmax(co_logits, dim=-1)
co = torch.multinomial(co_probs, 1).item()
# Create layer
layer = {
'operation': self.search_space.operations[op],
'channels': self.search_space.num_channels[ch],
'stride': self.search_space.strides[st],
'connection': self.search_space.connection_patterns[co]
}
architecture.append(layer)
# Update hidden state
_, hidden = self.controller(torch.zeros(1, 1, 1), hidden)
return architecture
def train(self, dataset):
"""Train the NAS system"""
import torch
import torch.optim as optim
# Controller optimizer
controller_optim = optim.Adam(self.controller.parameters(), lr=0.001)
# Training loop
for episode in range(self.num_episodes):
# Sample architecture
hidden = (torch.zeros(2, 1, 100), torch.zeros(2, 1, 100))
architecture = self.sample_architecture(hidden)
# Estimate performance
accuracy = self.performance_estimator.estimate(architecture, dataset)
# Calculate reward
reward = accuracy
# Update controller
# This would involve calculating policy gradients
# and updating the controller parameters
# Implementation omitted for brevity
print(f"Episode {episode+1}/{self.num_episodes}, Accuracy: {accuracy:.4f}")
# Return best architecture
return self._get_best_architecture()
def _get_best_architecture(self):
"""Get the best architecture found"""
# Implementation would return the architecture with highest performance
pass
Evolutionary NAS
# Evolutionary NAS implementation
class Evolutionary_NAS:
def __init__(self, search_space, population_size=100, num_generations=50,
mutation_rate=0.1, crossover_rate=0.7):
self.search_space = search_space
self.population_size = population_size
self.num_generations = num_generations
self.mutation_rate = mutation_rate
self.crossover_rate = crossover_rate
self.performance_estimator = PerformanceEstimator('weight_sharing')
def initialize_population(self):
"""Initialize the population with random architectures"""
population = []
for _ in range(self.population_size):
population.append(self.search_space.generate_random_architecture())
return population
def evaluate_population(self, population, dataset):
"""Evaluate the fitness of each architecture in the population"""
fitness_scores = []
for architecture in population:
accuracy = self.performance_estimator.estimate(architecture, dataset)
fitness_scores.append(accuracy)
return fitness_scores
def select_parents(self, population, fitness_scores):
"""Select parents for reproduction using tournament selection"""
parents = []
for _ in range(2): # Select 2 parents
# Tournament selection
tournament_size = 5
tournament = random.sample(list(zip(population, fitness_scores)), tournament_size)
tournament.sort(key=lambda x: x[1], reverse=True) # Sort by fitness
parents.append(tournament[0][0]) # Select winner
return parents
def crossover(self, parent1, parent2):
"""Perform crossover between two parents"""
if random.random() > self.crossover_rate:
return parent1, parent2 # No crossover
# Single-point crossover
min_len = min(len(parent1), len(parent2))
if min_len < 2:
return parent1, parent2
crossover_point = random.randint(1, min_len - 1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
def mutate(self, architecture):
"""Mutate an architecture"""
mutated = []
for layer in architecture:
if random.random() < self.mutation_rate:
# Mutate operation
if random.random() < 0.25:
layer['operation'] = random.choice(self.search_space.operations)
# Mutate channels
elif random.random() < 0.5:
layer['channels'] = random.choice(self.search_space.num_channels)
# Mutate stride
elif random.random() < 0.75:
layer['stride'] = random.choice(self.search_space.strides)
# Mutate connection
else:
layer['connection'] = random.choice(self.search_space.connection_patterns)
mutated.append(layer)
# Add or remove layers with small probability
if random.random() < self.mutation_rate * 0.5 and len(mutated) < max(self.search_space.num_layers):
# Add layer
mutated.append({
'operation': random.choice(self.search_space.operations),
'channels': random.choice(self.search_space.num_channels),
'stride': random.choice(self.search_space.strides),
'connection': random.choice(self.search_space.connection_patterns)
})
elif random.random() < self.mutation_rate * 0.5 and len(mutated) > 1:
# Remove layer
del mutated[random.randint(0, len(mutated) - 1)]
return mutated
def train(self, dataset):
"""Train the evolutionary NAS system"""
# Initialize population
population = self.initialize_population()
# Evolution loop
for generation in range(self.num_generations):
# Evaluate population
fitness_scores = self.evaluate_population(population, dataset)
# Create next generation
new_population = []
# Elitism: keep the best architecture
best_idx = fitness_scores.index(max(fitness_scores))
new_population.append(population[best_idx])
# Generate offspring
while len(new_population) < self.population_size:
# Select parents
parent1, parent2 = self.select_parents(population, fitness_scores)
# Crossover
child1, child2 = self.crossover(parent1, parent2)
# Mutate
child1 = self.mutate(child1)
child2 = self.mutate(child2)
# Add to new population
new_population.append(child1)
if len(new_population) < self.population_size:
new_population.append(child2)
population = new_population
# Print generation statistics
best_score = max(fitness_scores)
avg_score = sum(fitness_scores) / len(fitness_scores)
print(f"Generation {generation+1}/{self.num_generations}, "
f"Best: {best_score:.4f}, Avg: {avg_score:.4f}")
# Return best architecture
best_idx = fitness_scores.index(max(fitness_scores))
return population[best_idx]
Gradient-Based NAS
# Gradient-based NAS (DARTS) implementation
class DARTS:
def __init__(self, search_space, num_cells=8, num_nodes=4):
self.search_space = search_space
self.num_cells = num_cells
self.num_nodes = num_nodes
self.alphas = None # Architecture parameters
self.model = None # Supernet
def build_supernet(self):
"""Build the supernet with all possible operations"""
import torch.nn as nn
# Initialize architecture parameters
self.alphas = {}
for i in range(self.num_cells):
for j in range(self.num_nodes):
# Operation mixing weights
self.alphas[(i, j)] = nn.Parameter(torch.randn(len(self.search_space.operations)))
# Build the supernet
self.model = self._build_model_with_alphas()
def _build_model_with_alphas(self):
"""Build a model that can represent all possible architectures"""
import torch.nn as nn
import torch.nn.functional as F
class MixedOp(nn.Module):
"""Mixed operation that can represent all possible operations"""
def __init__(self, search_space, alphas):
super(MixedOp, self).__init__()
self.ops = nn.ModuleList()
self.alphas = alphas
for op in search_space.operations:
if op.startswith('conv'):
kernel_size = int(op.split('_')[-1][0])
if 'depthwise' in op:
self.ops.append(nn.Sequential(
nn.Conv2d(3, 3, kernel_size, padding=kernel_size//2, groups=3),
nn.BatchNorm2d(3),
nn.ReLU()
))
else:
self.ops.append(nn.Sequential(
nn.Conv2d(3, 16, kernel_size, padding=kernel_size//2),
nn.BatchNorm2d(16),
nn.ReLU()
))
elif op.startswith('pool'):
kernel_size = int(op.split('_')[-1][0])
if op.startswith('max'):
self.ops.append(nn.MaxPool2d(kernel_size, padding=kernel_size//2))
else:
self.ops.append(nn.AvgPool2d(kernel_size, padding=kernel_size//2))
elif op == 'identity':
self.ops.append(nn.Identity())
elif op == 'zero':
self.ops.append(ZeroOp())
def forward(self, x):
# Softmax over operations
weights = F.softmax(self.alphas, dim=-1)
# Weighted sum of operations
output = sum(w * op(x) for w, op in zip(weights, self.ops))
return output
class ZeroOp(nn.Module):
"""Zero operation"""
def forward(self, x):
return x * 0
# Build the supernet
layers = []
for i in range(self.num_cells):
for j in range(self.num_nodes):
layers.append(MixedOp(self.search_space, self.alphas[(i, j)]))
return nn.Sequential(*layers)
def train(self, dataset, epochs=50):
"""Train the DARTS system"""
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
# Build supernet
self.build_supernet()
# Optimizers
model_optim = optim.Adam(self.model.parameters(), lr=0.001)
arch_optim = optim.Adam(list(self.alphas.values()), lr=0.0003)
# Data loaders
train_loader = DataLoader(dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(dataset, batch_size=64, shuffle=False)
# Training loop
for epoch in range(epochs):
# Train model weights
self.model.train()
for inputs, targets in train_loader:
model_optim.zero_grad()
outputs = self.model(inputs)
loss = nn.CrossEntropyLoss()(outputs, targets)
loss.backward()
model_optim.step()
# Train architecture parameters
self.model.eval()
for inputs, targets in val_loader:
arch_optim.zero_grad()
outputs = self.model(inputs)
loss = nn.CrossEntropyLoss()(outputs, targets)
loss.backward()
arch_optim.step()
# Print epoch statistics
val_acc = self._evaluate(val_loader)
print(f"Epoch {epoch+1}/{epochs}, Val Acc: {val_acc:.4f}")
# Derive final architecture
return self._derive_architecture()
def _evaluate(self, data_loader):
"""Evaluate the model on a dataset"""
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in data_loader:
outputs = self.model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
def _derive_architecture(self):
"""Derive the final architecture from learned alphas"""
architecture = []
for i in range(self.num_cells):
for j in range(self.num_nodes):
# Select operation with highest alpha
alphas = F.softmax(self.alphas[(i, j)], dim=-1)
op_idx = torch.argmax(alphas).item()
op = self.search_space.operations[op_idx]
# Create layer
layer = {
'operation': op,
'channels': 16, # Default channels
'stride': 1, # Default stride
'connection': 'series_connection' # Default connection
}
architecture.append(layer)
return architecture
NAS Applications
Image Classification
# NAS for image classification
class NAS_ImageClassifier:
def __init__(self, search_method='darts', num_classes=10):
self.search_method = search_method
self.num_classes = num_classes
self.search_space = NAS_SearchSpace()
self.nas = self._create_nas_system()
def _create_nas_system(self):
"""Create the NAS system based on the selected method"""
if self.search_method == 'rl':
return RL_NAS(self.search_space)
elif self.search_method == 'evolutionary':
return Evolutionary_NAS(self.search_space)
elif self.search_method == 'darts':
return DARTS(self.search_space)
else:
raise ValueError(f"Unknown search method: {self.search_method}")
def search(self, dataset):
"""Search for the optimal architecture"""
return self.nas.train(dataset)
def train_final_model(self, architecture, dataset, epochs=100):
"""Train the final model with the discovered architecture"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# Build model from architecture
model = self._build_model_from_architecture(architecture)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Data loaders
train_loader = DataLoader(dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(dataset, batch_size=64, shuffle=False)
# Training loop
for epoch in range(epochs):
model.train()
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Validation
val_acc = self._evaluate_model(model, val_loader)
print(f"Epoch {epoch+1}/{epochs}, Val Acc: {val_acc:.4f}")
return model
def _build_model_from_architecture(self, architecture):
"""Build a model from the discovered architecture"""
import torch.nn as nn
layers = []
in_channels = 3 # RGB input
for layer in architecture:
if layer['operation'].startswith('conv'):
kernel_size = int(layer['operation'].split('_')[-1][0])
if 'depthwise' in layer['operation']:
layers.append(nn.Conv2d(
in_channels, in_channels,
kernel_size=kernel_size,
stride=layer['stride'],
padding=kernel_size//2,
groups=in_channels
))
else:
layers.append(nn.Conv2d(
in_channels, layer['channels'],
kernel_size=kernel_size,
stride=layer['stride'],
padding=kernel_size//2
))
in_channels = layer['channels']
layers.append(nn.BatchNorm2d(in_channels))
layers.append(nn.ReLU())
elif layer['operation'].startswith('pool'):
pool_type = layer['operation'].split('_')[0]
kernel_size = int(layer['operation'].split('_')[-1][0])
if pool_type == 'max':
layers.append(nn.MaxPool2d(kernel_size, stride=layer['stride']))
else:
layers.append(nn.AvgPool2d(kernel_size, stride=layer['stride']))
# Add final layers
layers.append(nn.AdaptiveAvgPool2d(1))
layers.append(nn.Flatten())
layers.append(nn.Linear(in_channels, self.num_classes))
return nn.Sequential(*layers)
def _evaluate_model(self, model, data_loader):
"""Evaluate a model on a dataset"""
import torch
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in data_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
Object Detection
# NAS for object detection
class NAS_ObjectDetector:
def __init__(self, search_method='darts'):
self.search_method = search_method
self.search_space = self._create_detection_search_space()
self.nas = self._create_nas_system()
def _create_detection_search_space(self):
"""Create a search space for object detection"""
search_space = NAS_SearchSpace()
# Add detection-specific operations
search_space.operations.extend([
'detection_head',
'roi_pooling',
'anchor_generation'
])
# Add detection-specific connection patterns
search_space.connection_patterns.extend([
'feature_pyramid',
'skip_connection_detection'
])
return search_space
def _create_nas_system(self):
"""Create the NAS system"""
if self.search_method == 'rl':
return RL_NAS(self.search_space)
elif self.search_method == 'evolutionary':
return Evolutionary_NAS(self.search_space)
elif self.search_method == 'darts':
return DARTS(self.search_space)
else:
raise ValueError(f"Unknown search method: {self.search_method}")
def search(self, dataset):
"""Search for the optimal architecture"""
return self.nas.train(dataset)
def train_final_model(self, architecture, dataset, epochs=100):
"""Train the final object detection model"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# Build model from architecture
model = self._build_detection_model(architecture)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Data loaders
train_loader = DataLoader(dataset, batch_size=16, shuffle=True)
val_loader = DataLoader(dataset, batch_size=16, shuffle=False)
# Training loop
for epoch in range(epochs):
model.train()
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Validation
val_acc = self._evaluate_model(model, val_loader)
print(f"Epoch {epoch+1}/{epochs}, Val Acc: {val_acc:.4f}")
return model
def _build_detection_model(self, architecture):
"""Build an object detection model from architecture"""
import torch.nn as nn
# Build backbone
backbone = []
in_channels = 3
for layer in architecture:
if layer['operation'] in ['detection_head', 'roi_pooling', 'anchor_generation']:
continue # Skip detection-specific layers for backbone
if layer['operation'].startswith('conv'):
kernel_size = int(layer['operation'].split('_')[-1][0])
if 'depthwise' in layer['operation']:
backbone.append(nn.Conv2d(
in_channels, in_channels,
kernel_size=kernel_size,
stride=layer['stride'],
padding=kernel_size//2,
groups=in_channels
))
else:
backbone.append(nn.Conv2d(
in_channels, layer['channels'],
kernel_size=kernel_size,
stride=layer['stride'],
padding=kernel_size//2
))
in_channels = layer['channels']
backbone.append(nn.BatchNorm2d(in_channels))
backbone.append(nn.ReLU())
elif layer['operation'].startswith('pool'):
pool_type = layer['operation'].split('_')[0]
kernel_size = int(layer['operation'].split('_')[-1][0])
if pool_type == 'max':
backbone.append(nn.MaxPool2d(kernel_size, stride=layer['stride']))
else:
backbone.append(nn.AvgPool2d(kernel_size, stride=layer['stride']))
backbone = nn.Sequential(*backbone)
# Build detection head
detection_head = []
for layer in architecture:
if layer['operation'] == 'detection_head':
detection_head.append(nn.Conv2d(in_channels, 9 * 5, kernel_size=1))
# 9 anchors per location, 5 values per anchor (4 coords + 1 confidence)
elif layer['operation'] == 'roi_pooling':
detection_head.append(nn.AdaptiveMaxPool2d((7, 7)))
elif layer['operation'] == 'anchor_generation':
# Anchor generation would be implemented here
pass
detection_head = nn.Sequential(*detection_head)
# Combine backbone and detection head
class DetectionModel(nn.Module):
def __init__(self, backbone, detection_head):
super(DetectionModel, self).__init__()
self.backbone = backbone
self.detection_head = detection_head
def forward(self, x):
features = self.backbone(x)
outputs = self.detection_head(features)
return outputs
return DetectionModel(backbone, detection_head)
def _evaluate_model(self, model, data_loader):
"""Evaluate the detection model"""
import torch
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in data_loader:
outputs = model(inputs)
# For detection, we would calculate mAP instead of accuracy
# This is simplified for illustration
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
Medical Imaging
# NAS for medical imaging
class NAS_MedicalImaging:
def __init__(self, search_method='darts', in_channels=1, num_classes=2):
self.search_method = search_method
self.in_channels = in_channels
self.num_classes = num_classes
self.search_space = self._create_medical_search_space()
self.nas = self._create_nas_system()
def _create_medical_search_space(self):
"""Create a search space for medical imaging"""
search_space = NAS_SearchSpace()
# Add medical imaging specific operations
search_space.operations.extend([
'3d_conv_3x3x3',
'3d_conv_5x5x5',
'3d_max_pool_2x2x2',
'3d_avg_pool_2x2x2',
'attention_gate',
'multi_scale_fusion'
])
# Add medical imaging specific connection patterns
search_space.connection_patterns.extend([
'skip_connection_3d',
'dense_connection_3d'
])
return search_space
def _create_nas_system(self):
"""Create the NAS system"""
if self.search_method == 'rl':
return RL_NAS(self.search_space)
elif self.search_method == 'evolutionary':
return Evolutionary_NAS(self.search_space)
elif self.search_method == 'darts':
return DARTS(self.search_space)
else:
raise ValueError(f"Unknown search method: {self.search_method}")
def search(self, dataset):
"""Search for the optimal architecture"""
return self.nas.train(dataset)
def train_final_model(self, architecture, dataset, epochs=100):
"""Train the final medical imaging model"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# Build model from architecture
model = self._build_medical_model(architecture)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Data loaders
train_loader = DataLoader(dataset, batch_size=16, shuffle=True)
val_loader = DataLoader(dataset, batch_size=16, shuffle=False)
# Training loop
for epoch in range(epochs):
model.train()
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Validation
val_acc = self._evaluate_model(model, val_loader)
print(f"Epoch {epoch+1}/{epochs}, Val Acc: {val_acc:.4f}")
return model
def _build_medical_model(self, architecture):
"""Build a medical imaging model from architecture"""
import torch.nn as nn
layers = []
in_channels = self.in_channels
for layer in architecture:
if layer['operation'].startswith('3d_conv'):
kernel_size = int(layer['operation'].split('_')[-1][0])
layers.append(nn.Conv3d(
in_channels, layer['channels'],
kernel_size=kernel_size,
stride=layer['stride'],
padding=kernel_size//2
))
in_channels = layer['channels']
layers.append(nn.BatchNorm3d(in_channels))
layers.append(nn.ReLU())
elif layer['operation'].startswith('3d_pool'):
pool_type = layer['operation'].split('_')[1]
kernel_size = int(layer['operation'].split('_')[-1][0])
if pool_type == 'max':
layers.append(nn.MaxPool3d(kernel_size, stride=layer['stride']))
else:
layers.append(nn.AvgPool3d(kernel_size, stride=layer['stride']))
elif layer['operation'] == 'attention_gate':
layers.append(AttentionGate(in_channels))
elif layer['operation'] == 'multi_scale_fusion':
layers.append(MultiScaleFusion(in_channels))
# Add final layers
layers.append(nn.AdaptiveAvgPool3d(1))
layers.append(nn.Flatten())
layers.append(nn.Linear(in_channels, self.num_classes))
return nn.Sequential(*layers)
def _evaluate_model(self, model, data_loader):
"""Evaluate the model on a dataset"""
import torch
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in data_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
class AttentionGate(nn.Module):
"""Attention gate for medical imaging"""
def __init__(self, in_channels):
super(AttentionGate, self).__init__()
self.conv = nn.Sequential(
nn.Conv3d(in_channels, in_channels, kernel_size=1),
nn.BatchNorm3d(in_channels),
nn.ReLU(),
nn.Conv3d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
attention = self.conv(x)
return x * attention
class MultiScaleFusion(nn.Module):
"""Multi-scale feature fusion for medical imaging"""
def __init__(self, in_channels):
super(MultiScaleFusion, self).__init__()
self.conv1 = nn.Conv3d(in_channels, in_channels, kernel_size=1)
self.conv3 = nn.Conv3d(in_channels, in_channels, kernel_size=3, padding=1)
self.conv5 = nn.Conv3d(in_channels, in_channels, kernel_size=5, padding=2)
def forward(self, x):
x1 = self.conv1(x)
x3 = self.conv3(x)
x5 = self.conv5(x)
return x1 + x3 + x5
NAS Research
Key Papers
- "Neural Architecture Search with Reinforcement Learning" (Zoph & Le, 2016)
- Introduced RL-based NAS
- Demonstrated effectiveness on image classification
- Foundation for modern NAS research
- "Efficient Neural Architecture Search via Parameter Sharing" (Pham et al., 2018)
- Introduced ENAS (Efficient NAS)
- Demonstrated weight sharing for efficiency
- Foundation for efficient NAS
- "DARTS: Differentiable Architecture Search" (Liu et al., 2018)
- Introduced gradient-based NAS
- Demonstrated differentiable search spaces
- Foundation for gradient-based NAS
- "Progressive Neural Architecture Search" (Liu et al., 2017)
- Introduced progressive NAS
- Demonstrated hierarchical search
- Foundation for progressive NAS
- "NAS-Bench-101: Towards Reproducible Neural Architecture Search" (Ying et al., 2019)
- Introduced NAS benchmark
- Provided reproducible evaluation
- Foundation for NAS evaluation
- "Once-for-All: Train One Network and Specialize it for Efficient Deployment" (Cai et al., 2019)
- Introduced once-for-all NAS
- Demonstrated efficient deployment
- Foundation for efficient NAS deployment
- "AutoML-Zero: Evolving Machine Learning Algorithms From Scratch" (Real et al., 2020)
- Demonstrated NAS for algorithm discovery
- Evolved complete ML algorithms
- Foundation for algorithmic NAS
Emerging Research Directions
- Efficient NAS: More compute-efficient search methods
- Multi-Objective NAS: Optimizing for multiple objectives (accuracy, latency, memory)
- Hardware-Aware NAS: Designing architectures for specific hardware
- Transferable NAS: Architectures that transfer across tasks
- Explainable NAS: Interpretable architecture search
- Few-Shot NAS: NAS with limited data
- Continual NAS: NAS for continual learning
- Neural Architecture Transfer: Transferring architectures across domains
- Theoretical Foundations: Better understanding of NAS
- Hardware Acceleration: Specialized hardware for NAS
- Green NAS: Energy-efficient architecture search
- Real-Time NAS: Fast architecture search for edge devices
- Foundation NAS: Large-scale pre-trained NAS models
NAS vs Traditional Architecture Design
| Feature | Neural Architecture Search (NAS) | Traditional Architecture Design |
|---|---|---|
| Design Process | Automated, algorithmic | Manual, expert-driven |
| Time Required | Days to weeks | Weeks to months |
| Expertise Needed | Machine learning knowledge | Deep domain expertise |
| Exploration | Systematic, exhaustive | Limited by human capacity |
| Optimization | Multi-objective, data-driven | Single-objective, experience-driven |
| Reproducibility | High (algorithm-dependent) | Low (expert-dependent) |
| Scalability | Excellent for large search spaces | Limited by human capacity |
| Cost | High computational cost | High human cost |
| Performance | State-of-the-art | Good but often suboptimal |
| Flexibility | High (adapts to new tasks) | Low (fixed architectures) |
| Interpretability | Can be low | High (human-designed) |
| Hardware Awareness | Can be integrated | Limited |
| Transferability | Can be designed for transfer | Limited |
Best Practices
Implementation Guidelines
| Aspect | Recommendation | Notes |
|---|---|---|
| Search Space | Start with well-defined, constrained space | Balance between exploration and efficiency |
| Search Strategy | Start with gradient-based (DARTS) | Good balance of speed and performance |
| Performance Estimation | Use weight sharing or proxy tasks | Reduces computational cost |
| Multi-Objective | Optimize for accuracy and efficiency | Consider latency, memory, power |
| Hardware Awareness | Include hardware constraints | Critical for deployment |
| Transfer Learning | Use pre-trained supernets | Reduces search time |
| Reproducibility | Use benchmarks like NAS-Bench-101 | Ensures fair comparison |
| Evaluation | Use multiple metrics | Accuracy, latency, memory, etc. |
| Early Stopping | Use for performance estimation | Reduces computational cost |
| Parallelization | Distribute across multiple GPUs/TPUs | Speeds up search |
Common Pitfalls and Solutions
| Pitfall | Solution | Example |
|---|---|---|
| Computational Cost | Use weight sharing, proxy tasks | ENAS, DARTS |
| Search Space Explosion | Constrain search space | Use cell-based search spaces |
| Overfitting | Use validation set, regularization | Early stopping, weight decay |
| Hardware Mismatch | Include hardware constraints | Hardware-aware NAS |
| Poor Transferability | Design transferable architectures | Once-for-all NAS |
| Evaluation Bias | Use multiple evaluation metrics | Accuracy, latency, memory |
| Reproducibility Issues | Use standardized benchmarks | NAS-Bench-101 |
| Local Optima | Use diverse search strategies | Combine RL, evolutionary, gradient-based |
| Implementation Complexity | Use existing frameworks | AutoKeras, Google AutoML |
| Data Efficiency | Use few-shot NAS techniques | Meta-learning for NAS |
Future Directions
- Foundation NAS Models: Large-scale pre-trained NAS models for transfer learning
- Automated ML Pipelines: End-to-end automated machine learning
- Hardware-Aware NAS: Architectures optimized for specific hardware
- Green NAS: Energy-efficient architecture search
- Real-Time NAS: Fast architecture search for edge devices
- Explainable NAS: Interpretable architecture search
- Few-Shot NAS: NAS with limited data
- Continual NAS: NAS for continual learning
- Neural Architecture Transfer: Transferring architectures across domains
- Theoretical Breakthroughs: Better understanding of NAS
- Hardware Acceleration: Specialized hardware for NAS
- Multimodal NAS: NAS for multimodal tasks
- Self-Improving NAS: NAS that improves its own search process
External Resources
- NAS Survey (Elsken et al.)
- RL-based NAS (Zoph & Le)
- ENAS (Pham et al.)
- DARTS (Liu et al.)
- Progressive NAS (Liu et al.)
- NAS-Bench-101 (Ying et al.)
- Once-for-All (Cai et al.)
- AutoML-Zero (Real et al.)
- NAS Tutorial (YouTube)
- NAS for Medical Imaging (arXiv)
- Efficient NAS (arXiv)
- Hardware-Aware NAS (arXiv)
- NAS Benchmarks
- AutoKeras
- Google AutoML
- NAS Papers with Code
Named Entity Recognition
Information extraction task that identifies and classifies named entities in text into predefined categories.
Neural Radiance Fields (NeRF)
A neural network-based approach for synthesizing photorealistic 3D scenes from 2D images using volume rendering and implicit scene representations.