ONNX
Open Neural Network Exchange format for model interoperability across frameworks.
What is ONNX?
ONNX (Open Neural Network Exchange) is an open format designed to represent machine learning models across different frameworks. It enables model interoperability, allowing developers to train models in one framework and deploy them in another without requiring model conversion. ONNX provides a standardized format for both deep learning and traditional machine learning models, facilitating collaboration and deployment across diverse platforms and hardware.
Key Concepts
ONNX Architecture
graph TD
A[ONNX] --> B[Model Representation]
A --> C[Operators]
A --> D[Interoperability]
A --> E[Runtime]
A --> F[Ecosystem]
A --> G[Tools]
B --> B1[Computational Graph]
B --> B2[Model Protobuf]
B --> B3[Versioning]
B --> B4[Metadata]
C --> C1[Standard Operators]
C --> C2[Custom Operators]
C --> C3[Operator Sets]
C --> C4[Extensibility]
D --> D1[Framework Interop]
D --> D2[Hardware Acceleration]
D --> D3[Cross-Platform]
D --> D4[Cloud Integration]
E --> E1[ONNX Runtime]
E --> E2[Execution Providers]
E --> E3[Optimization]
E --> E4[Quantization]
F --> F1[Model Zoo]
F --> F2[Converter Tools]
F --> F3[Validation Tools]
F --> F4[Community]
G --> G1[Conversion Tools]
G --> G2[Visualization Tools]
G --> G3[Optimization Tools]
G --> G4[Deployment Tools]
style A fill:#009688,stroke:#333
style B fill:#4CAF50,stroke:#333
style C fill:#2196F3,stroke:#333
style D fill:#9C27B0,stroke:#333
style E fill:#FF9800,stroke:#333
style F fill:#F44336,stroke:#333
style G fill:#607D8B,stroke:#333
Core Components
- Computational Graph: Directed acyclic graph representing model operations
- Protobuf Format: Efficient binary serialization format
- Operator Sets: Standardized collection of operations
- Model Metadata: Information about model architecture and training
- Versioning System: Support for model and operator versioning
- ONNX Runtime: High-performance inference engine
- Execution Providers: Hardware-specific optimizations
- Model Zoo: Repository of pre-trained models
- Conversion Tools: Utilities for framework interoperability
- Validation Tools: Model verification and testing
Applications
Machine Learning Workflows
- Model Development: Framework-agnostic model development
- Model Deployment: Cross-platform model deployment
- Model Optimization: Hardware-optimized model execution
- Model Sharing: Collaborative model development
- Model Versioning: Model lifecycle management
- Edge Deployment: Deployment on edge devices
- Cloud Deployment: Cloud-based model serving
- Hardware Acceleration: Leveraging specialized hardware
- Model Compression: Efficient model storage and transmission
- Model Validation: Ensuring model correctness and performance
Industry Applications
- Healthcare: Medical imaging and diagnostic models
- Finance: Fraud detection and risk assessment
- Retail: Recommendation systems and inventory optimization
- Manufacturing: Predictive maintenance and quality control
- Automotive: Autonomous vehicle perception systems
- Telecommunications: Network optimization and predictive maintenance
- Energy: Smart grid management and energy forecasting
- Agriculture: Crop monitoring and yield prediction
- Security: Threat detection and surveillance
- Entertainment: Content recommendation and personalization
Implementation
Basic ONNX Example
# Basic ONNX example
import numpy as np
import onnx
from onnx import helper, TensorProto
import onnxruntime as ort
import matplotlib.pyplot as plt
print("Basic ONNX Example...")
# 1. Create a simple ONNX model
print("\n1. Creating a Simple ONNX Model...")
# Create inputs (ValueInfoProto)
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [None, 2])
A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [2, 2])
B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [2])
# Create outputs (ValueInfoProto)
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 2])
# Create a node (NodeProto)
node_def = helper.make_node(
'Gemm', # Operation type
['X', 'A', 'B'], # Inputs
['Y'], # Outputs
alpha=1.0,
beta=1.0,
transB=1
)
# Create the graph (GraphProto)
graph_def = helper.make_graph(
[node_def], # Nodes
'linear-regression', # Name
[X, A, B], # Inputs
[Y] # Outputs
)
# Create the model (ModelProto)
model_def = helper.make_model(graph_def, producer_name='onnx-example')
# Save the model
onnx.save(model_def, 'linear_regression.onnx')
print("ONNX model saved to 'linear_regression.onnx'")
# 2. Load and inspect the model
print("\n2. Loading and Inspecting the Model...")
# Load the model
model = onnx.load('linear_regression.onnx')
# Check model validity
try:
onnx.checker.check_model(model)
print("Model is valid!")
except onnx.checker.ValidationError as e:
print(f"Model is invalid: {e}")
# Print model information
print("\nModel Information:")
print(f"IR Version: {model.ir_version}")
print(f"Producer Name: {model.producer_name}")
print(f"Opset Import: {model.opset_import}")
# Print graph information
print("\nGraph Information:")
graph = model.graph
print(f"Name: {graph.name}")
print(f"Inputs: {len(graph.input)}")
for i, input in enumerate(graph.input):
print(f" Input {i}: {input.name} ({input.type.tensor_type.elem_type})")
print(f"Outputs: {len(graph.output)}")
for i, output in enumerate(graph.output):
print(f" Output {i}: {output.name} ({output.type.tensor_type.elem_type})")
print(f"Nodes: {len(graph.node)}")
for i, node in enumerate(graph.node):
print(f" Node {i}: {node.op_type} - Inputs: {node.input}, Outputs: {node.output}")
# 3. Run inference with ONNX Runtime
print("\n3. Running Inference with ONNX Runtime...")
# Create ONNX Runtime session
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
# Create inference session
ort_session = ort.InferenceSession('linear_regression.onnx', sess_options)
# Prepare input data
X_test = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32)
A_test = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
B_test = np.array([0.5, 0.5], dtype=np.float32)
# Run inference
inputs = {
'X': X_test,
'A': A_test,
'B': B_test
}
outputs = ort_session.run(['Y'], inputs)
Y_pred = outputs[0]
print(f"Input X:\n{X_test}")
print(f"Weight A:\n{A_test}")
print(f"Bias B: {B_test}")
print(f"Output Y:\n{Y_pred}")
# Verify with NumPy
Y_expected = np.dot(X_test, A_test.T) + B_test
print(f"Expected output:\n{Y_expected}")
print(f"Results match: {np.allclose(Y_pred, Y_expected)}")
# 4. Visualize the model
print("\n4. Visualizing the Model...")
# This would typically use a visualization tool like Netron
print("Model visualization would be displayed using Netron or similar tools")
print("You can view the model at: https://netron.app")
# 5. Model optimization
print("\n5. Model Optimization...")
# Create optimized model
optimized_model_path = 'linear_regression_optimized.onnx'
sess_options = ort.SessionOptions()
sess_options.optimized_model_filepath = optimized_model_path
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
# Create session to trigger optimization
ort_session = ort.InferenceSession('linear_regression.onnx', sess_options)
print(f"Optimized model saved to '{optimized_model_path}'")
# Compare performance
def benchmark_session(model_path, input_data, n_runs=100):
"""Benchmark ONNX Runtime session"""
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
session = ort.InferenceSession(model_path, sess_options)
# Warm-up
for _ in range(10):
session.run(['Y'], input_data)
# Benchmark
import time
start_time = time.time()
for _ in range(n_runs):
session.run(['Y'], input_data)
elapsed_time = time.time() - start_time
return elapsed_time / n_runs
# Benchmark original and optimized models
input_data = {
'X': X_test,
'A': A_test,
'B': B_test
}
original_time = benchmark_session('linear_regression.onnx', input_data)
optimized_time = benchmark_session(optimized_model_path, input_data)
print(f"Original model average time: {original_time:.6f} seconds")
print(f"Optimized model average time: {optimized_time:.6f} seconds")
print(f"Speedup: {original_time/optimized_time:.2f}x")
# 6. Model conversion example
print("\n6. Model Conversion Example...")
# This example shows how to convert from a framework to ONNX
# Here we'll create a simple model and convert it
# Create a simple PyTorch model for conversion
try:
import torch
import torch.nn as nn
print("PyTorch available, demonstrating model conversion...")
# Define a simple PyTorch model
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.linear = nn.Linear(2, 2)
def forward(self, x):
return self.linear(x)
# Create model instance
pytorch_model = SimpleModel()
pytorch_model.eval()
# Create dummy input
dummy_input = torch.randn(1, 2)
# Export to ONNX
onnx_model_path = 'pytorch_model.onnx'
torch.onnx.export(
pytorch_model,
dummy_input,
onnx_model_path,
export_params=True,
opset_version=13,
do_constant_folding=True,
input_names=['input'],
output_names=['output'],
dynamic_axes={
'input': {0: 'batch_size'},
'output': {0: 'batch_size'}
}
)
print(f"PyTorch model converted to ONNX and saved to '{onnx_model_path}'")
# Load and test the converted model
ort_session = ort.InferenceSession(onnx_model_path)
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
# Run inference
torch_output = pytorch_model(dummy_input)
onnx_output = ort_session.run([output_name], {input_name: dummy_input.numpy()})[0]
print(f"PyTorch output: {torch_output.detach().numpy()}")
print(f"ONNX output: {onnx_output}")
print(f"Results match: {np.allclose(torch_output.detach().numpy(), onnx_output, rtol=1e-3)}")
except ImportError:
print("PyTorch not available, skipping model conversion example")
print("In practice, you would use torch.onnx.export() to convert PyTorch models")
# 7. Working with operator sets
print("\n7. Working with Operator Sets...")
# Check available operator sets
print("Available operator sets in the model:")
for opset in model.opset_import:
print(f" Domain: {opset.domain}, Version: {opset.version}")
# Create a model with multiple operator sets
print("\nCreating a model with multiple operator sets...")
# Create a model with custom operator set
custom_opset = helper.make_opsetid("custom.domain", 1)
model_with_custom_ops = helper.make_model(
graph_def,
producer_name='onnx-custom-ops',
opset_imports=[helper.make_opsetid("", 13), custom_opset]
)
# Save the model
onnx.save(model_with_custom_ops, 'model_with_custom_ops.onnx')
print("Model with custom operator set saved")
# 8. Model metadata
print("\n8. Model Metadata...")
# Add metadata to the model
model_with_metadata = onnx.load('linear_regression.onnx')
# Add metadata
model_with_metadata.metadata_props.extend([
helper.make_metadata_prop(key="author", value="AI Researcher"),
helper.make_metadata_prop(key="description", value="Simple linear regression model"),
helper.make_metadata_prop(key="framework", value="ONNX"),
helper.make_metadata_prop(key="version", value="1.0")
])
# Save the model with metadata
onnx.save(model_with_metadata, 'linear_regression_with_metadata.onnx')
print("Model with metadata saved")
# 9. Model validation
print("\n9. Model Validation...")
# Validate the model
try:
onnx.checker.check_model(model_with_metadata)
print("Model validation successful!")
except onnx.checker.ValidationError as e:
print(f"Model validation failed: {e}")
# Validate with different opset versions
print("\nValidating with different opset versions...")
for opset_version in [11, 12, 13, 14]:
try:
# Create a model with specific opset version
model_version = helper.make_model(
graph_def,
producer_name='onnx-version-test',
opset_imports=[helper.make_opsetid("", opset_version)]
)
onnx.checker.check_model(model_version)
print(f"Opset version {opset_version}: Valid")
except onnx.checker.ValidationError as e:
print(f"Opset version {opset_version}: Invalid - {e}")
except Exception as e:
print(f"Opset version {opset_version}: Error - {e}")
# 10. Working with tensors
print("\n10. Working with Tensors...")
# Create a model with initializers (tensors)
print("Creating a model with initializers...")
# Create tensors (initializers)
A_tensor = helper.make_tensor(
name='A',
data_type=TensorProto.FLOAT,
dims=[2, 2],
vals=A_test.flatten().tolist()
)
B_tensor = helper.make_tensor(
name='B',
data_type=TensorProto.FLOAT,
dims=[2],
vals=B_test.tolist()
)
# Create node
node_with_init = helper.make_node(
'Gemm',
['X', 'A', 'B'],
['Y'],
alpha=1.0,
beta=1.0,
transB=1
)
# Create graph with initializers
graph_with_init = helper.make_graph(
[node_with_init],
'linear-regression-with-init',
[X], # Only X is input, A and B are initializers
[Y],
[A_tensor, B_tensor] # Initializers
)
# Create model
model_with_init = helper.make_model(graph_with_init, producer_name='onnx-init-example')
onnx.save(model_with_init, 'linear_regression_with_init.onnx')
print("Model with initializers saved")
# Test the model with initializers
ort_session = ort.InferenceSession('linear_regression_with_init.onnx')
input_name = ort_session.get_inputs()[0].name
# Run inference
X_test = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
outputs = ort_session.run(['Y'], {input_name: X_test})
Y_pred = outputs[0]
print(f"Input X:\n{X_test}")
print(f"Output Y:\n{Y_pred}")
# Verify with expected output
Y_expected = np.dot(X_test, A_test.T) + B_test
print(f"Expected output:\n{Y_expected}")
print(f"Results match: {np.allclose(Y_pred, Y_expected)}")
Model Conversion Example
# Model conversion example with ONNX
import numpy as np
import onnx
import onnxruntime as ort
import matplotlib.pyplot as plt
print("\nModel Conversion Example...")
# 1. Convert from scikit-learn to ONNX
print("1. Converting scikit-learn Model to ONNX...")
try:
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
# Create a synthetic dataset
X, y = make_classification(n_samples=1000, n_features=4, n_classes=3, random_state=42)
# Train a logistic regression model
model = LogisticRegression(max_iter=1000, random_state=42)
model.fit(X, y)
print(f"Trained scikit-learn model with {X.shape[1]} features and {len(np.unique(y))} classes")
# Convert to ONNX
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]
onnx_model = convert_sklearn(model, initial_types=initial_type)
# Save the ONNX model
onnx.save(onnx_model, 'logistic_regression.onnx')
print("scikit-learn model converted to ONNX and saved")
# Test the converted model
ort_session = ort.InferenceSession('logistic_regression.onnx')
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
# Run inference
sample_input = X[:5].astype(np.float32)
skl_pred = model.predict(sample_input)
skl_proba = model.predict_proba(sample_input)
onnx_pred = ort_session.run([output_name], {input_name: sample_input})[0]
onnx_proba = ort_session.run(None, {input_name: sample_input})[1] # probabilities
print(f"Sample input:\n{sample_input}")
print(f"scikit-learn predictions: {skl_pred}")
print(f"ONNX predictions: {onnx_pred.flatten()}")
print(f"Predictions match: {np.array_equal(skl_pred, onnx_pred.flatten())}")
print(f"scikit-learn probabilities:\n{skl_proba}")
print(f"ONNX probabilities:\n{onnx_proba}")
print(f"Probabilities match: {np.allclose(skl_proba, onnx_proba, rtol=1e-4)}")
except ImportError:
print("scikit-learn or skl2onnx not available, skipping scikit-learn conversion example")
# 2. Convert from TensorFlow to ONNX
print("\n2. Converting TensorFlow Model to ONNX...")
try:
import tensorflow as tf
from tf2onnx import convert
print("TensorFlow available, demonstrating model conversion...")
# Create a simple TensorFlow model
model = tf.keras.Sequential([
tf.keras.layers.Dense(10, activation='relu', input_shape=(4,)),
tf.keras.layers.Dense(3, activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
# Train on synthetic data
X, y = make_classification(n_samples=1000, n_features=4, n_classes=3, random_state=42)
model.fit(X, y, epochs=10, batch_size=32, verbose=0)
print("Trained TensorFlow model")
# Convert to ONNX
spec = (tf.TensorSpec((None, 4), tf.float32, name="input"),
tf.TensorSpec((None, 3), tf.float32, name="output"))
output_path = "tf_model.onnx"
model_proto, _ = convert.from_keras(model, input_signature=spec, opset=13)
with open(output_path, "wb") as f:
f.write(model_proto.SerializeToString())
print(f"TensorFlow model converted to ONNX and saved to '{output_path}'")
# Test the converted model
ort_session = ort.InferenceSession(output_path)
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
# Run inference
sample_input = X[:5].astype(np.float32)
tf_pred = model.predict(sample_input)
onnx_pred = ort_session.run([output_name], {input_name: sample_input})[0]
print(f"Sample input:\n{sample_input}")
print(f"TensorFlow predictions:\n{tf_pred}")
print(f"ONNX predictions:\n{onnx_pred}")
print(f"Predictions match: {np.allclose(tf_pred, onnx_pred, rtol=1e-4)}")
except ImportError:
print("TensorFlow or tf2onnx not available, skipping TensorFlow conversion example")
# 3. Convert from PyTorch to ONNX (repeated for completeness)
print("\n3. Converting PyTorch Model to ONNX...")
try:
import torch
import torch.nn as nn
print("PyTorch available, demonstrating model conversion...")
# Define a simple PyTorch model
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc = nn.Linear(64 * 7 * 7, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# Create model instance
pytorch_model = SimpleCNN()
pytorch_model.eval()
# Create dummy input (batch_size=1, channels=1, height=28, width=28)
dummy_input = torch.randn(1, 1, 28, 28)
# Export to ONNX
onnx_model_path = 'pytorch_cnn.onnx'
torch.onnx.export(
pytorch_model,
dummy_input,
onnx_model_path,
export_params=True,
opset_version=13,
do_constant_folding=True,
input_names=['input'],
output_names=['output'],
dynamic_axes={
'input': {0: 'batch_size'},
'output': {0: 'batch_size'}
}
)
print(f"PyTorch CNN model converted to ONNX and saved to '{onnx_model_path}'")
# Load and test the converted model
ort_session = ort.InferenceSession(onnx_model_path)
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
# Run inference
torch_output = pytorch_model(dummy_input)
onnx_output = ort_session.run([output_name], {input_name: dummy_input.numpy()})[0]
print(f"PyTorch output shape: {torch_output.shape}")
print(f"ONNX output shape: {onnx_output.shape}")
print(f"Results match: {np.allclose(torch_output.detach().numpy(), onnx_output, rtol=1e-3)}")
except ImportError:
print("PyTorch not available, skipping PyTorch CNN conversion example")
# 4. Convert from Keras to ONNX
print("\n4. Converting Keras Model to ONNX...")
try:
from tensorflow import keras
from tensorflow.keras import layers
import keras2onnx
print("Keras available, demonstrating model conversion...")
# Create a simple Keras model
model = keras.Sequential([
layers.Dense(64, activation='relu', input_shape=(20,)),
layers.Dropout(0.2),
layers.Dense(32, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train on synthetic data
X = np.random.randn(1000, 20)
y = np.random.randint(0, 2, size=(1000,))
model.fit(X, y, epochs=5, batch_size=32, verbose=0)
print("Trained Keras model")
# Convert to ONNX
onnx_model = keras2onnx.convert_keras(model, model.name)
onnx_model_path = "keras_model.onnx"
onnx.save(onnx_model, onnx_model_path)
print(f"Keras model converted to ONNX and saved to '{onnx_model_path}'")
# Test the converted model
ort_session = ort.InferenceSession(onnx_model_path)
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
# Run inference
sample_input = X[:5].astype(np.float32)
keras_pred = model.predict(sample_input)
onnx_pred = ort_session.run([output_name], {input_name: sample_input})[0]
print(f"Sample input shape: {sample_input.shape}")
print(f"Keras predictions:\n{keras_pred}")
print(f"ONNX predictions:\n{onnx_pred}")
print(f"Predictions match: {np.allclose(keras_pred, onnx_pred, rtol=1e-4)}")
except ImportError:
print("Keras or keras2onnx not available, skipping Keras conversion example")
# 5. Convert from XGBoost to ONNX
print("\n5. Converting XGBoost Model to ONNX...")
try:
import xgboost as xgb
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
print("XGBoost available, demonstrating model conversion...")
# Create a synthetic dataset
X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, random_state=42)
# Train an XGBoost model
model = xgb.XGBClassifier(n_estimators=100, max_depth=3, random_state=42)
model.fit(X, y)
print("Trained XGBoost model")
# Convert to ONNX
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]
onnx_model = convert_sklearn(model, initial_types=initial_type)
# Save the ONNX model
onnx.save(onnx_model, 'xgboost_model.onnx')
print("XGBoost model converted to ONNX and saved")
# Test the converted model
ort_session = ort.InferenceSession('xgboost_model.onnx')
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
# Run inference
sample_input = X[:5].astype(np.float32)
xgb_pred = model.predict(sample_input)
xgb_proba = model.predict_proba(sample_input)
onnx_pred = ort_session.run([output_name], {input_name: sample_input})[0]
onnx_proba = ort_session.run(None, {input_name: sample_input})[1] # probabilities
print(f"Sample input:\n{sample_input}")
print(f"XGBoost predictions: {xgb_pred}")
print(f"ONNX predictions: {onnx_pred.flatten()}")
print(f"Predictions match: {np.array_equal(xgb_pred, onnx_pred.flatten())}")
print(f"XGBoost probabilities:\n{xgb_proba}")
print(f"ONNX probabilities:\n{onnx_proba}")
print(f"Probabilities match: {np.allclose(xgb_proba, onnx_proba, rtol=1e-4)}")
except ImportError:
print("XGBoost or skl2onnx not available, skipping XGBoost conversion example")
ONNX Runtime Optimization Example
# ONNX Runtime optimization example
import numpy as np
import onnx
import onnxruntime as ort
import time
import matplotlib.pyplot as plt
print("\nONNX Runtime Optimization Example...")
# 1. Create a more complex model for optimization
print("1. Creating a Complex Model for Optimization...")
# This model will have multiple layers and operations
# Create input and output tensors
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [None, 10])
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 3])
# Create initializers (weights and biases)
np.random.seed(42)
W1 = np.random.randn(10, 20).astype(np.float32)
b1 = np.random.randn(20).astype(np.float32)
W2 = np.random.randn(20, 10).astype(np.float32)
b2 = np.random.randn(10).astype(np.float32)
W3 = np.random.randn(10, 3).astype(np.float32)
b3 = np.random.randn(3).astype(np.float32)
# Create tensors
W1_tensor = helper.make_tensor('W1', TensorProto.FLOAT, W1.shape, W1.flatten().tolist())
b1_tensor = helper.make_tensor('b1', TensorProto.FLOAT, b1.shape, b1.tolist())
W2_tensor = helper.make_tensor('W2', TensorProto.FLOAT, W2.shape, W2.flatten().tolist())
b2_tensor = helper.make_tensor('b2', TensorProto.FLOAT, b2.shape, b2.tolist())
W3_tensor = helper.make_tensor('W3', TensorProto.FLOAT, W3.shape, W3.flatten().tolist())
b3_tensor = helper.make_tensor('b3', TensorProto.FLOAT, b3.shape, b3.tolist())
# Create nodes
node1 = helper.make_node('Gemm', ['X', 'W1', 'b1'], ['hidden1'])
node2 = helper.make_node('Relu', ['hidden1'], ['hidden1_relu'])
node3 = helper.make_node('Gemm', ['hidden1_relu', 'W2', 'b2'], ['hidden2'])
node4 = helper.make_node('Relu', ['hidden2'], ['hidden2_relu'])
node5 = helper.make_node('Gemm', ['hidden2_relu', 'W3', 'b3'], ['Y'])
# Create graph
graph_def = helper.make_graph(
[node1, node2, node3, node4, node5],
'complex-model',
[X],
[Y],
[W1_tensor, b1_tensor, W2_tensor, b2_tensor, W3_tensor, b3_tensor]
)
# Create model
model_def = helper.make_model(graph_def, producer_name='onnx-optimization-example')
onnx.save(model_def, 'complex_model.onnx')
print("Complex model saved to 'complex_model.onnx'")
# 2. Benchmark different optimization levels
print("\n2. Benchmarking Different Optimization Levels...")
# Create test data
X_test = np.random.randn(1000, 10).astype(np.float32)
# Define optimization levels
optimization_levels = [
('ORT_DISABLE_ALL', ort.GraphOptimizationLevel.ORT_DISABLE_ALL),
('ORT_ENABLE_BASIC', ort.GraphOptimizationLevel.ORT_ENABLE_BASIC),
('ORT_ENABLE_EXTENDED', ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED),
('ORT_ENABLE_ALL', ort.GraphOptimizationLevel.ORT_ENABLE_ALL)
]
times = []
throughputs = []
for name, level in optimization_levels:
print(f"\nBenchmarking {name}...")
# Create session with specific optimization level
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = level
# Create session
session = ort.InferenceSession('complex_model.onnx', sess_options)
# Warm-up
for _ in range(10):
session.run(['Y'], {'X': X_test})
# Benchmark
n_runs = 100
start_time = time.time()
for _ in range(n_runs):
session.run(['Y'], {'X': X_test})
elapsed_time = time.time() - start_time
avg_time = elapsed_time / n_runs
throughput = len(X_test) / avg_time
times.append(avg_time)
throughputs.append(throughput)
print(f" Average time: {avg_time:.6f} seconds")
print(f" Throughput: {throughput:.2f} samples/second")
# Plot results
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.bar([name for name, _ in optimization_levels], times)
plt.title('Inference Time by Optimization Level')
plt.ylabel('Time (seconds)')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
plt.bar([name for name, _ in optimization_levels], throughputs)
plt.title('Throughput by Optimization Level')
plt.ylabel('Samples/second')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 3. Execution providers comparison
print("\n3. Execution Providers Comparison...")
# Check available execution providers
providers = ort.get_available_providers()
print("Available execution providers:")
for i, provider in enumerate(providers):
print(f" {i+1}. {provider}")
# Benchmark different execution providers
provider_times = {}
provider_throughputs = {}
for provider in providers:
print(f"\nBenchmarking {provider}...")
try:
# Create session with specific provider
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
# Create session
session = ort.InferenceSession('complex_model.onnx', sess_options, providers=[provider])
# Warm-up
for _ in range(10):
session.run(['Y'], {'X': X_test})
# Benchmark
n_runs = 100
start_time = time.time()
for _ in range(n_runs):
session.run(['Y'], {'X': X_test})
elapsed_time = time.time() - start_time
avg_time = elapsed_time / n_runs
throughput = len(X_test) / avg_time
provider_times[provider] = avg_time
provider_throughputs[provider] = throughput
print(f" Average time: {avg_time:.6f} seconds")
print(f" Throughput: {throughput:.2f} samples/second")
except Exception as e:
print(f" Error: {e}")
provider_times[provider] = float('nan')
provider_throughputs[provider] = float('nan')
# Plot provider comparison
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
valid_providers = [p for p in providers if not np.isnan(provider_times[p])]
valid_times = [provider_times[p] for p in valid_providers]
plt.bar(valid_providers, valid_times)
plt.title('Inference Time by Execution Provider')
plt.ylabel('Time (seconds)')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
valid_throughputs = [provider_throughputs[p] for p in valid_providers]
plt.bar(valid_providers, valid_throughputs)
plt.title('Throughput by Execution Provider')
plt.ylabel('Samples/second')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 4. Model quantization
print("\n4. Model Quantization...")
# Quantization can significantly improve performance on some hardware
# Create a quantized version of the model
try:
from onnxruntime.quantization import quantize_dynamic, QuantType
print("Creating quantized model...")
# Quantize the model
quantized_model_path = 'complex_model_quantized.onnx'
quantize_dynamic(
'complex_model.onnx',
quantized_model_path,
weight_type=QuantType.QUInt8
)
print(f"Quantized model saved to '{quantized_model_path}'")
# Compare model sizes
import os
original_size = os.path.getsize('complex_model.onnx') / 1024
quantized_size = os.path.getsize(quantized_model_path) / 1024
print(f"Original model size: {original_size:.2f} KB")
print(f"Quantized model size: {quantized_size:.2f} KB")
print(f"Size reduction: {original_size/quantized_size:.2f}x")
# Benchmark quantized model
print("\nBenchmarking quantized model...")
# Create sessions
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
original_session = ort.InferenceSession('complex_model.onnx', sess_options)
quantized_session = ort.InferenceSession(quantized_model_path, sess_options)
# Warm-up
for _ in range(10):
original_session.run(['Y'], {'X': X_test})
quantized_session.run(['Y'], {'X': X_test})
# Benchmark
n_runs = 100
# Original model
start_time = time.time()
for _ in range(n_runs):
original_session.run(['Y'], {'X': X_test})
original_time = (time.time() - start_time) / n_runs
# Quantized model
start_time = time.time()
for _ in range(n_runs):
quantized_session.run(['Y'], {'X': X_test})
quantized_time = (time.time() - start_time) / n_runs
print(f"Original model average time: {original_time:.6f} seconds")
print(f"Quantized model average time: {quantized_time:.6f} seconds")
print(f"Speedup: {original_time/quantized_time:.2f}x")
# Compare accuracy
print("\nComparing accuracy...")
# Run inference on both models
original_output = original_session.run(['Y'], {'X': X_test})[0]
quantized_output = quantized_session.run(['Y'], {'X': X_test})[0]
# Calculate maximum difference
max_diff = np.max(np.abs(original_output - quantized_output))
mean_diff = np.mean(np.abs(original_output - quantized_output))
print(f"Maximum difference: {max_diff:.6f}")
print(f"Mean difference: {mean_diff:.6f}")
# Check if results are close
results_close = np.allclose(original_output, quantized_output, rtol=1e-2, atol=1e-2)
print(f"Results are close: {results_close}")
except ImportError:
print("ONNX Runtime quantization tools not available, skipping quantization example")
# 5. Session options tuning
print("\n5. Session Options Tuning...")
# Explore different session options for performance tuning
# Create different session configurations
configurations = [
('Default', {}),
('Optimized', {
'graph_optimization_level': ort.GraphOptimizationLevel.ORT_ENABLE_ALL,
'execution_mode': ort.ExecutionMode.ORT_SEQUENTIAL
}),
('Parallel', {
'graph_optimization_level': ort.GraphOptimizationLevel.ORT_ENABLE_ALL,
'execution_mode': ort.ExecutionMode.ORT_PARALLEL,
'inter_op_num_threads': 4,
'intra_op_num_threads': 2
}),
('Optimized + Parallel', {
'graph_optimization_level': ort.GraphOptimizationLevel.ORT_ENABLE_ALL,
'execution_mode': ort.ExecutionMode.ORT_PARALLEL,
'inter_op_num_threads': 4,
'intra_op_num_threads': 4
})
]
config_times = []
config_throughputs = []
for name, options in configurations:
print(f"\nBenchmarking {name} configuration...")
# Create session options
sess_options = ort.SessionOptions()
for key, value in options.items():
setattr(sess_options, key, value)
# Create session
session = ort.InferenceSession('complex_model.onnx', sess_options)
# Warm-up
for _ in range(10):
session.run(['Y'], {'X': X_test})
# Benchmark
n_runs = 100
start_time = time.time()
for _ in range(n_runs):
session.run(['Y'], {'X': X_test})
elapsed_time = time.time() - start_time
avg_time = elapsed_time / n_runs
throughput = len(X_test) / avg_time
config_times.append(avg_time)
config_throughputs.append(throughput)
print(f" Average time: {avg_time:.6f} seconds")
print(f" Throughput: {throughput:.2f} samples/second")
# Plot configuration comparison
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.bar([name for name, _ in configurations], config_times)
plt.title('Inference Time by Configuration')
plt.ylabel('Time (seconds)')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
plt.bar([name for name, _ in configurations], config_throughputs)
plt.title('Throughput by Configuration')
plt.ylabel('Samples/second')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 6. Batch size optimization
print("\n6. Batch Size Optimization...")
# Test different batch sizes for optimal performance
batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
batch_times = []
batch_throughputs = []
for batch_size in batch_sizes:
print(f"\nBenchmarking batch size {batch_size}...")
# Create test data
X_batch = np.random.randn(batch_size, 10).astype(np.float32)
# Create session
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
session = ort.InferenceSession('complex_model.onnx', sess_options)
# Warm-up
for _ in range(10):
session.run(['Y'], {'X': X_batch})
# Benchmark
n_runs = 100
start_time = time.time()
for _ in range(n_runs):
session.run(['Y'], {'X': X_batch})
elapsed_time = time.time() - start_time
avg_time = elapsed_time / n_runs
throughput = batch_size / avg_time
batch_times.append(avg_time)
batch_throughputs.append(throughput)
print(f" Average time: {avg_time:.6f} seconds")
print(f" Throughput: {throughput:.2f} samples/second")
# Plot batch size optimization
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(batch_sizes, batch_times, marker='o')
plt.title('Inference Time by Batch Size')
plt.xlabel('Batch Size')
plt.ylabel('Time (seconds)')
plt.xscale('log', base=2)
plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(batch_sizes, batch_throughputs, marker='o')
plt.title('Throughput by Batch Size')
plt.xlabel('Batch Size')
plt.ylabel('Samples/second')
plt.xscale('log', base=2)
plt.grid(True)
plt.tight_layout()
plt.show()
# Find optimal batch size
optimal_idx = np.argmax(batch_throughputs)
optimal_batch_size = batch_sizes[optimal_idx]
optimal_throughput = batch_throughputs[optimal_idx]
print(f"\nOptimal batch size: {optimal_batch_size}")
print(f"Optimal throughput: {optimal_throughput:.2f} samples/second")
Model Deployment Example
# Model deployment example with ONNX
import numpy as np
import onnx
import onnxruntime as ort
import time
import json
from flask import Flask, request, jsonify
print("\nModel Deployment Example...")
# 1. Prepare a model for deployment
print("1. Preparing Model for Deployment...")
# We'll use the complex model created earlier
model_path = 'complex_model.onnx'
# Load and validate the model
model = onnx.load(model_path)
try:
onnx.checker.check_model(model)
print("Model is valid for deployment")
except onnx.checker.ValidationError as e:
print(f"Model validation failed: {e}")
# For this example, we'll proceed anyway
# Add deployment metadata
model.metadata_props.extend([
helper.make_metadata_prop(key="task", value="classification"),
helper.make_metadata_prop(key="framework", value="ONNX"),
helper.make_metadata_prop(key="version", value="1.0"),
helper.make_metadata_prop(key="description", value="Multi-layer neural network for classification"),
helper.make_metadata_prop(key="input_shape", value="[batch_size, 10]"),
helper.make_metadata_prop(key="output_shape", value="[batch_size, 3]"),
helper.make_metadata_prop(key="author", value="AI Engineer"),
helper.make_metadata_prop(key="license", value="MIT")
])
# Save the model with metadata
deployment_model_path = 'deployment_model.onnx'
onnx.save(model, deployment_model_path)
print(f"Model prepared for deployment and saved to '{deployment_model_path}'")
# 2. Create a deployment configuration
print("\n2. Creating Deployment Configuration...")
deployment_config = {
"model": {
"path": deployment_model_path,
"input_name": "X",
"output_name": "Y",
"input_shape": [None, 10],
"output_shape": [None, 3],
"dtype": "float32"
},
"runtime": {
"execution_provider": "CPUExecutionProvider",
"optimization_level": "ORT_ENABLE_ALL",
"inter_op_num_threads": 4,
"intra_op_num_threads": 2,
"execution_mode": "ORT_PARALLEL"
},
"api": {
"version": "1.0",
"endpoint": "/predict",
"methods": ["POST"],
"input_format": "json",
"output_format": "json"
},
"monitoring": {
"enable_metrics": True,
"metrics_interval": 60,
"log_requests": True,
"log_responses": False
},
"security": {
"enable_auth": False,
"api_keys": []
}
}
# Save configuration
with open('deployment_config.json', 'w') as f:
json.dump(deployment_config, f, indent=2)
print("Deployment configuration saved to 'deployment_config.json'")
# 3. Create a REST API for model serving
print("\n3. Creating REST API for Model Serving...")
app = Flask(__name__)
# Load model and configuration
with open('deployment_config.json', 'r') as f:
config = json.load(f)
# Create ONNX Runtime session
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = getattr(ort.GraphOptimizationLevel,
config['runtime']['optimization_level'])
sess_options.inter_op_num_threads = config['runtime']['inter_op_num_threads']
sess_options.intra_op_num_threads = config['runtime']['intra_op_num_threads']
sess_options.execution_mode = getattr(ort.ExecutionMode, config['runtime']['execution_mode'])
# Create session with specified execution provider
execution_provider = config['runtime']['execution_provider']
session = ort.InferenceSession(
config['model']['path'],
sess_options,
providers=[execution_provider]
)
# Get input and output names
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
print(f"Model loaded with input: {input_name}, output: {output_name}")
print(f"Execution provider: {execution_provider}")
# API endpoint for predictions
@app.route(config['api']['endpoint'], methods=config['api']['methods'])
def predict():
"""API endpoint for model predictions"""
start_time = time.time()
try:
# Get input data from request
if request.content_type != 'application/json':
return jsonify({
"error": "Content-Type must be application/json",
"status": "error"
}), 415
data = request.get_json()
# Validate input
if 'input' not in data:
return jsonify({
"error": "Missing 'input' field in request",
"status": "error"
}), 400
input_data = np.array(data['input'], dtype=np.float32)
# Validate input shape
if len(input_data.shape) != 2 or input_data.shape[1] != 10:
return jsonify({
"error": f"Input must have shape [batch_size, 10], got {input_data.shape}",
"status": "error"
}), 400
# Run inference
outputs = session.run([output_name], {input_name: input_data})
predictions = outputs[0].tolist()
# Prepare response
response = {
"predictions": predictions,
"model": config['model']['path'],
"status": "success",
"processing_time": time.time() - start_time
}
return jsonify(response)
except Exception as e:
return jsonify({
"error": str(e),
"status": "error",
"processing_time": time.time() - start_time
}), 500
# Health check endpoint
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
return jsonify({
"status": "healthy",
"model_loaded": True,
"execution_provider": execution_provider,
"timestamp": time.time()
})
# Model metadata endpoint
@app.route('/metadata', methods=['GET'])
def model_metadata():
"""Model metadata endpoint"""
metadata = {
"model": config['model']['path'],
"input_name": config['model']['input_name'],
"output_name": config['model']['output_name'],
"input_shape": config['model']['input_shape'],
"output_shape": config['model']['output_shape'],
"onnx_version": onnx.__version__,
"onnxruntime_version": ort.__version__,
"execution_provider": execution_provider,
"metadata": {prop.key: prop.value for prop in model.metadata_props}
}
return jsonify(metadata)
print("REST API endpoints created:")
print(f" Prediction endpoint: {config['api']['endpoint']}")
print(f" Health check endpoint: /health")
print(f" Metadata endpoint: /metadata")
# 4. Test the API locally
print("\n4. Testing the API Locally...")
# Create test data
test_input = np.random.randn(3, 10).astype(np.float32).tolist()
# Test prediction endpoint
print("Testing prediction endpoint...")
test_data = {"input": test_input}
# In a real scenario, we would use requests.post()
# For this example, we'll simulate the API call
with app.test_request_context(
config['api']['endpoint'],
method='POST',
json=test_data,
content_type='application/json'
):
response = predict()
print(f"Response status: {response.status_code}")
print(f"Response data: {response.get_json()}")
# Test health endpoint
print("\nTesting health endpoint...")
with app.test_request_context('/health', method='GET'):
response = health_check()
print(f"Response status: {response.status_code}")
print(f"Response data: {response.get_json()}")
# Test metadata endpoint
print("\nTesting metadata endpoint...")
with app.test_request_context('/metadata', method='GET'):
response = model_metadata()
print(f"Response status: {response.status_code}")
print(f"Response data keys: {list(response.get_json().keys())}")
# 5. Create a client for the API
print("\n5. Creating API Client...")
class ONNXModelClient:
"""Client for ONNX model API"""
def __init__(self, base_url):
self.base_url = base_url
def predict(self, input_data):
"""Make prediction request"""
import requests
url = f"{self.base_url}{config['api']['endpoint']}"
headers = {'Content-Type': 'application/json'}
data = {"input": input_data}
try:
response = requests.post(url, json=data, headers=headers)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e), "status": "error"}
def health_check(self):
"""Check API health"""
import requests
url = f"{self.base_url}/health"
try:
response = requests.get(url)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e), "status": "error"}
def get_metadata(self):
"""Get model metadata"""
import requests
url = f"{self.base_url}/metadata"
try:
response = requests.get(url)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e), "status": "error"}
# Example usage
print("Example client usage:")
client = ONNXModelClient("http://localhost:5000")
# Test client methods
print("Client created. In a real deployment, you would use:")
print(" client = ONNXModelClient('http://your-api-url:port')")
print(" predictions = client.predict(input_data)")
print(" health = client.health_check()")
print(" metadata = client.get_metadata()")
# 6. Deployment considerations
print("\n6. Deployment Considerations...")
deployment_considerations = [
"1. **Containerization**: Package the model and API in a Docker container for easy deployment",
"2. **Scaling**: Use container orchestration (Kubernetes) for horizontal scaling",
"3. **Load Balancing**: Implement load balancing for high traffic scenarios",
"4. **Monitoring**: Set up monitoring for performance, errors, and model drift",
"5. **Logging**: Implement comprehensive logging for debugging and auditing",
"6. **Security**: Secure the API with authentication and HTTPS",
"7. **Model Versioning**: Implement model versioning for rollback and A/B testing",
"8. **CI/CD Pipeline**: Set up continuous integration and deployment for model updates",
"9. **Hardware Acceleration**: Use GPUs or specialized hardware for performance-critical applications",
"10. **Fallback Mechanism**: Implement fallback to CPU if GPU is unavailable",
"11. **Model Caching**: Cache frequent predictions to reduce computation",
"12. **Input Validation**: Validate all inputs to prevent malicious or malformed data",
"13. **Rate Limiting**: Implement rate limiting to prevent abuse",
"14. **Documentation**: Provide comprehensive API documentation",
"15. **Testing**: Implement thorough testing (unit, integration, load testing)"
]
print("Key deployment considerations:")
for consideration in deployment_considerations:
print(f" • {consideration}")
# 7. Create a Dockerfile for deployment
print("\n7. Creating Dockerfile for Deployment...")
dockerfile_content = """# ONNX Model Serving Dockerfile
FROM python:3.8-slim
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \\
build-essential \\
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy application files
COPY deployment_model.onnx .
COPY deployment_config.json .
COPY app.py .
# Set working directory
WORKDIR /app
# Expose port
EXPOSE 5000
# Health check
HEALTHCHECK --interval=30s --timeout=3s \\
CMD curl -f http://localhost:5000/health || exit 1
# Run the application
CMD ["gunicorn", "--bind", "0.0.0.0:5000", "--workers", "4", "app:app"]
"""
# Save Dockerfile
with open('Dockerfile', 'w') as f:
f.write(dockerfile_content)
# Create requirements.txt
requirements_content = """flask==2.0.1
gunicorn==20.1.0
numpy==1.21.2
onnx==1.10.1
onnxruntime==1.9.0
"""
with open('requirements.txt', 'w') as f:
f.write(requirements_content)
print("Dockerfile and requirements.txt created")
print("To build and run the container:")
print(" docker build -t onnx-model-server .")
print(" docker run -p 5000:5000 onnx-model-server")
# 8. Cloud deployment options
print("\n8. Cloud Deployment Options...")
cloud_options = [
{
"name": "AWS",
"services": [
"AWS SageMaker",
"AWS Lambda",
"AWS ECS/EKS",
"AWS EC2"
],
"features": [
"Managed ONNX Runtime",
"Auto-scaling",
"GPU support",
"Model monitoring"
]
},
{
"name": "Google Cloud",
"services": [
"Google Vertex AI",
"Google Cloud Run",
"Google Kubernetes Engine",
"Google Compute Engine"
],
"features": [
"ONNX model serving",
"AutoML integration",
"TPU support",
"Model versioning"
]
},
{
"name": "Azure",
"services": [
"Azure Machine Learning",
"Azure Kubernetes Service",
"Azure Functions",
"Azure Container Instances"
],
"features": [
"Native ONNX support",
"GPU acceleration",
"Model management",
"CI/CD integration"
]
},
{
"name": "IBM Cloud",
"services": [
"IBM Watson Machine Learning",
"IBM Cloud Kubernetes Service",
"IBM Cloud Functions"
],
"features": [
"ONNX model deployment",
"Auto-scaling",
"Model monitoring",
"Explainability"
]
}
]
print("Cloud deployment options:")
for option in cloud_options:
print(f"\n{option['name']}:")
print(f" Services: {', '.join(option['services'])}")
print(f" Features: {', '.join(option['features'])}")
# 9. Edge deployment considerations
print("\n9. Edge Deployment Considerations...")
edge_considerations = [
"1. **Model Size**: Optimize model size for edge devices with limited storage",
"2. **Memory Constraints**: Ensure model fits within device memory limitations",
"3. **Compute Power**: Optimize for devices with limited CPU/GPU capabilities",
"4. **Power Efficiency**: Minimize power consumption for battery-powered devices",
"5. **Latency Requirements**: Meet real-time processing requirements",
"6. **Connectivity**: Handle intermittent or limited network connectivity",
"7. **Security**: Secure models and data on edge devices",
"8. **Updates**: Implement efficient model update mechanisms",
"9. **Hardware Acceleration**: Leverage specialized hardware (NPUs, TPUs) when available",
"10. **Fallback Mechanisms**: Implement fallback to simpler models if performance is insufficient",
"11. **Data Privacy**: Process sensitive data locally to maintain privacy",
"12. **Environmental Conditions**: Handle varying temperature, humidity, and other conditions",
"13. **Device Management**: Implement remote monitoring and management of edge devices",
"14. **Offline Operation**: Support offline operation with local model storage",
"15. **Edge-Cloud Synergy**: Implement hybrid edge-cloud architectures for optimal performance"
]
print("Edge deployment considerations:")
for consideration in edge_considerations:
print(f" • {consideration}")
# 10. Monitoring and maintenance
print("\n10. Monitoring and Maintenance...")
monitoring_components = [
{
"name": "Performance Monitoring",
"metrics": [
"Inference latency",
"Throughput (requests/second)",
"CPU/GPU utilization",
"Memory usage",
"Batch processing time"
],
"tools": [
"Prometheus",
"Grafana",
"Cloud monitoring services"
]
},
{
"name": "Model Monitoring",
"metrics": [
"Prediction distribution",
"Input data distribution",
"Model drift detection",
"Accuracy metrics",
"Error rates"
],
"tools": [
"MLflow",
"Evidently AI",
"Arize",
"WhyLabs"
]
},
{
"name": "Operational Monitoring",
"metrics": [
"API uptime",
"Error rates",
"Request volume",
"Response times",
"System health"
],
"tools": [
"Datadog",
"New Relic",
"ELK Stack",
"Sentry"
]
},
{
"name": "Security Monitoring",
"metrics": [
"Authentication failures",
"Unauthorized access attempts",
"Data breaches",
"API abuse detection",
"Compliance violations"
],
"tools": [
"AWS GuardDuty",
"Azure Security Center",
"Google Cloud Security Command Center"
]
}
]
print("Monitoring components:")
for component in monitoring_components:
print(f"\n{component['name']}:")
print(f" Metrics: {', '.join(component['metrics'])}")
print(f" Tools: {', '.join(component['tools'])}")
# Maintenance tasks
maintenance_tasks = [
"1. **Model Updates**: Regularly update models with new data and improved algorithms",
"2. **Performance Tuning**: Continuously optimize model performance based on monitoring data",
"3. **Security Patches**: Apply security updates to dependencies and infrastructure",
"4. **Hardware Maintenance**: Maintain and upgrade hardware as needed",
"5. **Data Pipeline Maintenance**: Ensure data pipelines feeding the model are functioning correctly",
"6. **Dependency Updates**: Keep dependencies up-to-date with security fixes and new features",
"7. **Documentation Updates**: Maintain up-to-date documentation for APIs and models",
"8. **Disaster Recovery**: Implement and test disaster recovery procedures",
"9. **Capacity Planning**: Monitor resource usage and plan for capacity increases",
"10. **User Feedback**: Collect and incorporate user feedback to improve model performance",
"11. **Compliance Audits**: Conduct regular audits to ensure compliance with regulations",
"12. **Cost Optimization**: Monitor and optimize cloud costs and resource utilization",
"13. **Model Retraining**: Schedule regular model retraining with fresh data",
"14. **A/B Testing**: Conduct A/B tests for new model versions before full deployment",
"15. **Incident Response**: Implement and maintain incident response procedures"
]
print("\nMaintenance tasks:")
for task in maintenance_tasks:
print(f" • {task}")
Performance Optimization
ONNX Performance Techniques
| Technique | Description | Use Case |
|---|---|---|
| Graph Optimization | Optimize computational graph for performance | General performance improvement |
| Execution Providers | Use hardware-specific optimizations | GPU/TPU acceleration |
| Quantization | Reduce model precision for faster inference | Edge devices, performance-critical applications |
| Operator Fusion | Combine multiple operations into single kernels | Reducing memory bandwidth |
| Memory Optimization | Optimize memory usage and allocation | Large models, memory-constrained devices |
| Parallel Execution | Parallelize operations across threads | Multi-core CPUs |
| Batch Processing | Process multiple inputs simultaneously | High-throughput applications |
| Model Pruning | Remove unnecessary weights and operations | Model compression |
| Hardware Acceleration | Leverage specialized hardware | GPUs, TPUs, NPUs |
| Caching | Cache frequent predictions | Repeated similar inputs |
| Input Optimization | Optimize input data processing | Data preprocessing pipelines |
Performance Comparison Example
# Performance comparison example with ONNX
import numpy as np
import onnx
import onnxruntime as ort
import time
import matplotlib.pyplot as plt
print("\nPerformance Comparison Example...")
# 1. Create test models for comparison
print("1. Creating Test Models for Comparison...")
# Simple model (single layer)
X_simple = helper.make_tensor_value_info('X', TensorProto.FLOAT, [None, 10])
Y_simple = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 3])
W_simple = np.random.randn(10, 3).astype(np.float32)
b_simple = np.random.randn(3).astype(np.float32)
W_simple_tensor = helper.make_tensor('W', TensorProto.FLOAT, W_simple.shape, W_simple.flatten().tolist())
b_simple_tensor = helper.make_tensor('b', TensorProto.FLOAT, b_simple.shape, b_simple.tolist())
node_simple = helper.make_node('Gemm', ['X', 'W', 'b'], ['Y'], alpha=1.0, beta=1.0)
graph_simple = helper.make_graph([node_simple], 'simple-model', [X_simple], [Y_simple], [W_simple_tensor, b_simple_tensor])
model_simple = helper.make_model(graph_simple, producer_name='onnx-simple')
onnx.save(model_simple, 'simple_model.onnx')
# Medium model (two layers)
X_medium = helper.make_tensor_value_info('X', TensorProto.FLOAT, [None, 10])
Y_medium = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 3])
W1_medium = np.random.randn(10, 20).astype(np.float32)
b1_medium = np.random.randn(20).astype(np.float32)
W2_medium = np.random.randn(20, 3).astype(np.float32)
b2_medium = np.random.randn(3).astype(np.float32)
W1_medium_tensor = helper.make_tensor('W1', TensorProto.FLOAT, W1_medium.shape, W1_medium.flatten().tolist())
b1_medium_tensor = helper.make_tensor('b1', TensorProto.FLOAT, b1_medium.shape, b1_medium.tolist())
W2_medium_tensor = helper.make_tensor('W2', TensorProto.FLOAT, W2_medium.shape, W2_medium.flatten().tolist())
b2_medium_tensor = helper.make_tensor('b2', TensorProto.FLOAT, b2_medium.shape, b2_medium.tolist())
node1_medium = helper.make_node('Gemm', ['X', 'W1', 'b1'], ['hidden'])
node2_medium = helper.make_node('Relu', ['hidden'], ['hidden_relu'])
node3_medium = helper.make_node('Gemm', ['hidden_relu', 'W2', 'b2'], ['Y'])
graph_medium = helper.make_graph(
[node1_medium, node2_medium, node3_medium],
'medium-model',
[X_medium],
[Y_medium],
[W1_medium_tensor, b1_medium_tensor, W2_medium_tensor, b2_medium_tensor]
)
model_medium = helper.make_model(graph_medium, producer_name='onnx-medium')
onnx.save(model_medium, 'medium_model.onnx')
# Complex model (three layers - already created)
# We'll use the complex_model.onnx created earlier
print("Test models created:")
print(" • Simple model: 1 layer")
print(" • Medium model: 2 layers")
print(" • Complex model: 3 layers")
# 2. Benchmark different model complexities
print("\n2. Benchmarking Different Model Complexities...")
# Create test data
X_test = np.random.randn(1000, 10).astype(np.float32)
# Benchmark function
def benchmark_model(model_path, input_data, n_runs=100):
"""Benchmark ONNX model"""
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
session = ort.InferenceSession(model_path, sess_options)
# Warm-up
for _ in range(10):
session.run(['Y'], {'X': input_data})
# Benchmark
start_time = time.time()
for _ in range(n_runs):
session.run(['Y'], {'X': input_data})
elapsed_time = time.time() - start_time
return elapsed_time / n_runs
# Benchmark models
models = [
('Simple', 'simple_model.onnx'),
('Medium', 'medium_model.onnx'),
('Complex', 'complex_model.onnx')
]
complexity_times = []
complexity_throughputs = []
for name, model_path in models:
print(f"\nBenchmarking {name} model...")
avg_time = benchmark_model(model_path, X_test)
throughput = len(X_test) / avg_time
complexity_times.append(avg_time)
complexity_throughputs.append(throughput)
print(f" Average time: {avg_time:.6f} seconds")
print(f" Throughput: {throughput:.2f} samples/second")
# Plot complexity comparison
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.bar([name for name, _ in models], complexity_times)
plt.title('Inference Time by Model Complexity')
plt.ylabel('Time (seconds)')
plt.subplot(1, 2, 2)
plt.bar([name for name, _ in models], complexity_throughputs)
plt.title('Throughput by Model Complexity')
plt.ylabel('Samples/second')
plt.tight_layout()
plt.show()
# 3. Compare ONNX with native frameworks
print("\n3. Comparing ONNX with Native Frameworks...")
framework_comparison = []
# Compare with PyTorch
try:
import torch
import torch.nn as nn
print("PyTorch available, comparing with ONNX...")
# Create PyTorch model equivalent to the medium ONNX model
class PyTorchModel(nn.Module):
def __init__(self):
super(PyTorchModel, self).__init__()
self.linear1 = nn.Linear(10, 20)
self.linear2 = nn.Linear(20, 3)
def forward(self, x):
x = torch.relu(self.linear1(x))
x = self.linear2(x)
return x
# Initialize model
pytorch_model = PyTorchModel()
pytorch_model.eval()
# Set weights to match ONNX model
with torch.no_grad():
pytorch_model.linear1.weight.copy_(torch.from_numpy(W1_medium.T))
pytorch_model.linear1.bias.copy_(torch.from_numpy(b1_medium))
pytorch_model.linear2.weight.copy_(torch.from_numpy(W2_medium.T))
pytorch_model.linear2.bias.copy_(torch.from_numpy(b2_medium))
# Benchmark PyTorch model
X_torch = torch.from_numpy(X_test)
# Warm-up
for _ in range(10):
with torch.no_grad():
pytorch_model(X_torch)
# Benchmark
n_runs = 100
start_time = time.time()
for _ in range(n_runs):
with torch.no_grad():
pytorch_model(X_torch)
pytorch_time = (time.time() - start_time) / n_runs
pytorch_throughput = len(X_test) / pytorch_time
print(f"PyTorch average time: {pytorch_time:.6f} seconds")
print(f"PyTorch throughput: {pytorch_throughput:.2f} samples/second")
# Compare with ONNX
onnx_time = complexity_times[1] # Medium model
onnx_throughput = complexity_throughputs[1]
print(f"ONNX average time: {onnx_time:.6f} seconds")
print(f"ONNX throughput: {onnx_throughput:.2f} samples/second")
framework_comparison.append({
'framework': 'PyTorch',
'time': pytorch_time,
'throughput': pytorch_throughput,
'speedup': onnx_time / pytorch_time if pytorch_time > 0 else float('inf')
})
except ImportError:
print("PyTorch not available, skipping PyTorch comparison")
# Compare with TensorFlow
try:
import tensorflow as tf
from tensorflow.keras import layers
print("TensorFlow available, comparing with ONNX...")
# Create TensorFlow model equivalent to the medium ONNX model
tf_model = tf.keras.Sequential([
layers.Dense(20, activation='relu', input_shape=(10,)),
layers.Dense(3)
])
# Set weights to match ONNX model
tf_model.layers[0].set_weights([W1_medium.T, b1_medium])
tf_model.layers[1].set_weights([W2_medium.T, b2_medium])
# Benchmark TensorFlow model
X_tf = tf.convert_to_tensor(X_test)
# Warm-up
for _ in range(10):
tf_model(X_tf)
# Benchmark
n_runs = 100
start_time = time.time()
for _ in range(n_runs):
tf_model(X_tf)
tf_time = (time.time() - start_time) / n_runs
tf_throughput = len(X_test) / tf_time
print(f"TensorFlow average time: {tf_time:.6f} seconds")
print(f"TensorFlow throughput: {tf_throughput:.2f} samples/second")
# Compare with ONNX
onnx_time = complexity_times[1] # Medium model
onnx_throughput = complexity_throughputs[1]
print(f"ONNX average time: {onnx_time:.6f} seconds")
print(f"ONNX throughput: {onnx_throughput:.2f} samples/second")
framework_comparison.append({
'framework': 'TensorFlow',
'time': tf_time,
'throughput': tf_throughput,
'speedup': onnx_time / tf_time if tf_time > 0 else float('inf')
})
except ImportError:
print("TensorFlow not available, skipping TensorFlow comparison")
# Plot framework comparison
if framework_comparison:
plt.figure(figsize=(12, 5))
frameworks = [fc['framework'] for fc in framework_comparison]
times = [fc['time'] for fc in framework_comparison]
throughputs = [fc['throughput'] for fc in framework_comparison]
plt.subplot(1, 2, 1)
plt.bar(frameworks, times)
plt.title('Inference Time by Framework')
plt.ylabel('Time (seconds)')
plt.subplot(1, 2, 2)
plt.bar(frameworks, throughputs)
plt.title('Throughput by Framework')
plt.ylabel('Samples/second')
plt.tight_layout()
plt.show()
# Print comparison table
print("\nFramework Comparison:")
print(f"{'Framework':<15} {'Time (s)':<12} {'Throughput':<15} {'Speedup':<10}")
print("-" * 55)
for fc in framework_comparison:
print(f"{fc['framework']:<15} {fc['time']:.6f} {fc['throughput']:.2f} {fc['speedup']:.2f}x")
# Add ONNX to the comparison
onnx_fc = {
'framework': 'ONNX Runtime',
'time': complexity_times[1],
'throughput': complexity_throughputs[1],
'speedup': 1.0
}
print(f"{onnx_fc['framework']:<15} {onnx_fc['time']:.6f} {onnx_fc['throughput']:.2f} {onnx_fc['speedup']:.2f}x")
# 4. Memory usage comparison
print("\n4. Memory Usage Comparison...")
# Function to estimate memory usage
def estimate_memory_usage(model_path):
"""Estimate memory usage of ONNX model"""
# Load model
model = onnx.load(model_path)
# Calculate parameter memory
param_memory = 0
for initializer in model.graph.initializer:
# Each float32 parameter uses 4 bytes
param_memory += np.prod(initializer.dims) * 4
# Calculate activation memory (approximate)
# This is a rough estimate based on input/output sizes
input_size = np.prod(model.graph.input[0].type.tensor_type.shape.dim[1:].dim_value) * 4
output_size = np.prod(model.graph.output[0].type.tensor_type.shape.dim[1:].dim_value) * 4
activation_memory = input_size + output_size
# Total memory estimate
total_memory = param_memory + activation_memory
return {
'parameter_memory': param_memory / (1024 * 1024), # MB
'activation_memory': activation_memory / (1024 * 1024), # MB
'total_memory': total_memory / (1024 * 1024) # MB
}
# Compare memory usage
print("Memory usage comparison (MB):")
print(f"{'Model':<10} {'Parameters':<12} {'Activations':<15} {'Total':<10}")
print("-" * 50)
for name, model_path in models:
memory = estimate_memory_usage(model_path)
print(f"{name:<10} {memory['parameter_memory']:.2f} {memory['activation_memory']:.2f} {memory['total_memory']:.2f}")
# 5. Scalability testing
print("\n5. Scalability Testing...")
# Test with different input sizes
input_sizes = [100, 1000, 10000, 100000]
scalability_results = {name: [] for name, _ in models}
for size in input_sizes:
print(f"\nTesting with {size} samples...")
X_large = np.random.randn(size, 10).astype(np.float32)
for name, model_path in models:
avg_time = benchmark_model(model_path, X_large, n_runs=10)
throughput = size / avg_time
scalability_results[name].append({
'size': size,
'time': avg_time,
'throughput': throughput
})
print(f" {name} model: {avg_time:.6f}s, {throughput:.2f} samples/s")
# Plot scalability results
plt.figure(figsize=(12, 10))
# Time vs input size
plt.subplot(2, 1, 1)
for name, results in scalability_results.items():
sizes = [r['size'] for r in results]
times = [r['time'] for r in results]
plt.plot(sizes, times, marker='o', label=name)
plt.title('Inference Time vs Input Size')
plt.xlabel('Input Size (samples)')
plt.ylabel('Time (seconds)')
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.grid(True)
# Throughput vs input size
plt.subplot(2, 1, 2)
for name, results in scalability_results.items():
sizes = [r['size'] for r in results]
throughputs = [r['throughput'] for r in results]
plt.plot(sizes, throughputs, marker='o', label=name)
plt.title('Throughput vs Input Size')
plt.xlabel('Input Size (samples)')
plt.ylabel('Throughput (samples/second)')
plt.xscale('log')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 6. Real-world scenario simulation
print("\n6. Real-World Scenario Simulation...")
# Simulate a production scenario with varying load
def simulate_production_load(model_path, load_pattern, warmup=100):
"""Simulate production load on a model"""
# Create session
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
session = ort.InferenceSession(model_path, sess_options)
# Warm-up
X_warmup = np.random.randn(100, 10).astype(np.float32)
for _ in range(warmup):
session.run(['Y'], {'X': X_warmup})
# Simulate load
results = []
for i, batch_size in enumerate(load_pattern):
X_batch = np.random.randn(batch_size, 10).astype(np.float32)
start_time = time.time()
session.run(['Y'], {'X': X_batch})
elapsed_time = time.time() - start_time
throughput = batch_size / elapsed_time
results.append({
'batch_size': batch_size,
'time': elapsed_time,
'throughput': throughput,
'request_id': i
})
return results
# Define load patterns
load_patterns = {
'Steady': [100] * 50,
'Spiky': [10, 10, 10, 1000, 10, 10, 10, 1000, 10, 10],
'Increasing': [10, 20, 50, 100, 200, 500, 1000, 2000],
'Decreasing': [2000, 1000, 500, 200, 100, 50, 20, 10]
}
# Simulate for each model
simulation_results = {}
for name, model_path in models:
print(f"\nSimulating production load for {name} model...")
simulation_results[name] = {}
for pattern_name, pattern in load_patterns.items():
print(f" Simulating {pattern_name} load pattern...")
results = simulate_production_load(model_path, pattern)
simulation_results[name][pattern_name] = results
# Calculate statistics
times = [r['time'] for r in results]
throughputs = [r['throughput'] for r in results]
avg_time = np.mean(times)
avg_throughput = np.mean(throughputs)
max_time = np.max(times)
min_throughput = np.min(throughputs)
print(f" Avg time: {avg_time:.6f}s, Avg throughput: {avg_throughput:.2f} samples/s")
print(f" Max time: {max_time:.6f}s, Min throughput: {min_throughput:.2f} samples/s")
# Plot simulation results
for pattern_name in load_patterns:
plt.figure(figsize=(15, 10))
# Plot for each model
for i, (name, results_dict) in enumerate(simulation_results.items()):
results = results_dict[pattern_name]
batch_sizes = [r['batch_size'] for r in results]
times = [r['time'] for r in results]
throughputs = [r['throughput'] for r in results]
plt.subplot(2, 2, i+1)
plt.plot(batch_sizes, times, marker='o')
plt.title(f'{name} Model - {pattern_name} Load')
plt.xlabel('Batch Size')
plt.ylabel('Time (seconds)')
plt.grid(True)
plt.tight_layout()
plt.show()
Challenges
Conceptual Challenges
- Model Interoperability: Ensuring consistent behavior across frameworks
- Operator Support: Handling framework-specific operations
- Version Compatibility: Managing different ONNX versions
- Performance Optimization: Balancing accuracy and performance
- Hardware Acceleration: Leveraging specialized hardware effectively
- Model Complexity: Handling large and complex models
- Numerical Precision: Managing precision differences across frameworks
- Dynamic Shapes: Supporting variable input shapes
Practical Challenges
- Model Conversion: Converting models from various frameworks
- Operator Coverage: Handling custom or unsupported operations
- Performance Tuning: Optimizing for specific hardware
- Memory Management: Handling large models on resource-constrained devices
- Deployment Complexity: Managing deployment across diverse environments
- Version Management: Handling model and runtime versioning
- Debugging: Debugging converted models
- Security: Securing models and inference endpoints
Technical Challenges
- Operator Implementation: Implementing efficient operators
- Graph Optimization: Optimizing computational graphs
- Hardware Abstraction: Abstracting hardware-specific optimizations
- Memory Bandwidth: Managing memory bandwidth limitations
- Numerical Stability: Ensuring numerical stability across platforms
- Quantization: Implementing effective quantization techniques
- Parallelization: Efficiently parallelizing operations
- Model Compression: Compressing models without significant accuracy loss
Research and Advancements
Key Developments
- "ONNX: Open Neural Network Exchange" (Bai et al., 2019)
- Introduced ONNX format
- Presented model interoperability framework
- Demonstrated cross-framework model exchange
- "ONNX Runtime: Performance Optimizations for Machine Learning Inference" (2020)
- Presented ONNX Runtime optimizations
- Demonstrated performance improvements
- Showed hardware acceleration techniques
- "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference" (Jacob et al., 2018)
- Presented quantization techniques for ONNX
- Demonstrated integer-only inference
- Showed accuracy-preserving quantization
- "Hardware-Aware Neural Network Architecture Search" (2021)
- Presented hardware-aware model optimization
- Demonstrated ONNX integration with NAS
- Showed performance improvements on specific hardware
- "ONNX-MLIR: Compiling ONNX Models with MLIR" (2022)
- Presented MLIR-based compilation for ONNX
- Demonstrated performance optimizations
- Showed integration with LLVM ecosystem
Emerging Research Directions
- Automated Model Optimization: Auto-tuning for specific hardware
- Neurosymbolic Integration: Combining neural networks with symbolic reasoning
- Federated Learning: Privacy-preserving distributed learning with ONNX
- Explainable AI: Interpretability in ONNX models
- Green AI: Energy-efficient model deployment
- Edge Computing: ONNX for edge devices
- Quantum Machine Learning: ONNX for quantum computing
- Multimodal Learning: Processing multiple data modalities
- Automated Model Compression: Intelligent model compression techniques
- Hardware-Software Co-Design: Joint optimization of models and hardware
Best Practices
Model Development
- Start with Standard Operators: Use standard ONNX operators when possible
- Validate Early: Validate models during development
- Test Across Frameworks: Test models in different frameworks
- Document Model: Include comprehensive metadata
- Version Control: Use versioning for models and operators
Model Conversion
- Use Official Converters: Prefer official conversion tools
- Validate After Conversion: Always validate converted models
- Handle Custom Operators: Implement custom operators when needed
- Test Thoroughly: Test converted models extensively
- Document Conversion: Document conversion process and issues
Performance Optimization
- Profile First: Identify bottlenecks before optimization
- Use Appropriate Optimization Level: Choose optimization level based on needs
- Leverage Hardware: Use appropriate execution providers
- Optimize Batch Size: Find optimal batch size for your use case
- Consider Quantization: Use quantization for edge deployment
Deployment
- Containerize: Use containers for consistent deployment
- Monitor Performance: Implement comprehensive monitoring
- Secure Endpoints: Secure API endpoints
- Implement Fallbacks: Provide fallback mechanisms
- Plan for Updates: Implement model versioning and update strategies
Maintenance
- Monitor Models: Track model performance in production
- Update Regularly: Keep models and dependencies updated
- Document Changes: Maintain documentation of changes
- Test Updates: Test model updates before deployment
- Plan for Deprecation: Have a plan for model deprecation
External Resources
- ONNX Official Website
- ONNX GitHub Repository
- ONNX Documentation
- ONNX Runtime GitHub
- ONNX Model Zoo
- ONNX Tutorials
- ONNX Operators
- ONNX Specifications
- ONNX Converter Tools
- ONNX Runtime Documentation
- ONNX Community
- ONNX Issue Tracker
- ONNX Release Notes
- ONNX Examples
- ONNX Backend Test
- ONNX Model Conversion
- ONNX Runtime Execution Providers
- ONNX Runtime Quantization
- ONNX Runtime Benchmarks
- ONNX Runtime API
- ONNX Runtime Python API
- ONNX Runtime C++ API
- ONNX Runtime Java API
- ONNX Runtime C# API
- ONNX Runtime Node.js API