Positional Encoding

Technique to incorporate sequence order information in attention-based models that lack inherent sequential processing.

What is Positional Encoding?

Positional encoding is a technique used to inject information about the relative or absolute position of tokens in a sequence into attention-based models that lack inherent sequential processing capabilities. Unlike recurrent neural networks (RNNs) that process sequences sequentially, transformer models and other attention-based architectures process all tokens in parallel, making it necessary to explicitly provide positional information to maintain sequence order awareness.

Key Characteristics

  • Sequence Order Awareness: Provides information about token positions
  • Differentiable: Fully compatible with backpropagation
  • Fixed or Learned: Can be pre-defined or learned during training
  • Scalable: Works with sequences of varying lengths
  • Model-Agnostic: Can be used with any attention-based architecture
  • Efficient: Computationally inexpensive to implement
  • Interpretable: Provides insights into positional relationships

Why Positional Encoding Matters

Limitations of Attention Mechanisms

Attention mechanisms and multi-head attention are permutation-equivariant, meaning they treat input sequences as sets rather than ordered sequences. Without positional information:

  • Order Information Lost: "cat chases mouse" becomes indistinguishable from "mouse chases cat"
  • Temporal Relationships Ignored: Sequence order and timing information is lost
  • Contextual Understanding Limited: Models cannot distinguish between different positions
  • Performance Degradation: Tasks requiring sequence order perform poorly

Benefits of Positional Encoding

BenefitDescription
Order PreservationMaintains sequence order information
Temporal AwarenessEnables understanding of time/position
Contextual UnderstandingImproves comprehension of sequential data
Model PerformanceEnhances performance on sequence tasks
FlexibilityWorks with variable-length sequences
InterpretabilityProvides insights into positional patterns

Types of Positional Encoding

Fixed Positional Encoding

Sinusoidal Positional Encoding

The original positional encoding introduced in the Transformer paper uses sinusoidal functions:

$$ PE_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right) $$ $$ PE_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right) $$

where:

  • $pos$ is the position in the sequence
  • $i$ is the dimension index (0 ≤ $i$ < $d_{\text{model}}/2$)
  • $d_{\text{model}}$ is the embedding dimension
import numpy as np
import tensorflow as tf

def sinusoidal_positional_encoding(max_length, d_model):
    """Generate sinusoidal positional encoding"""
    position = np.arange(max_length)[:, np.newaxis]
    div_term = np.exp(np.arange(0, d_model, 2) * -(np.log(10000.0) / d_model))

    pe = np.zeros((max_length, d_model))
    pe[:, 0::2] = np.sin(position * div_term)
    pe[:, 1::2] = np.cos(position * div_term)

    return tf.constant(pe, dtype=tf.float32)

# Usage
max_length = 100
d_model = 512
pos_encoding = sinusoidal_positional_encoding(max_length, d_model)

Visualization of Sinusoidal Encoding

import matplotlib.pyplot as plt

def plot_positional_encoding(pe, title="Sinusoidal Positional Encoding"):
    """Visualize positional encoding patterns"""
    plt.figure(figsize=(12, 8))
    plt.pcolormesh(pe.numpy().T, cmap='viridis')
    plt.xlabel('Position in Sequence')
    plt.ylabel('Embedding Dimension')
    plt.title(title)
    plt.colorbar()
    plt.show()

# Plot sinusoidal positional encoding
plot_positional_encoding(pos_encoding)

Learned Positional Encoding

Instead of using fixed functions, positional encodings can be learned during training:

from tensorflow.keras.layers import Embedding

class LearnedPositionalEncoding(tf.keras.layers.Layer):
    def __init__(self, max_length, d_model):
        super(LearnedPositionalEncoding, self).__init__()
        self.position_embedding = Embedding(
            input_dim=max_length,
            output_dim=d_model
        )

    def call(self, inputs):
        """Add positional encoding to inputs"""
        seq_length = tf.shape(inputs)[1]
        positions = tf.range(seq_length)[tf.newaxis, :]
        return inputs + self.position_embedding(positions)

# Usage
max_length = 100
d_model = 512
pos_encoding_layer = LearnedPositionalEncoding(max_length, d_model)

Relative Positional Encoding

Encodes relative distances between tokens rather than absolute positions:

class RelativePositionalEncoding(tf.keras.layers.Layer):
    def __init__(self, max_relative_position, d_model):
        super(RelativePositionalEncoding, self).__init__()
        self.max_relative_position = max_relative_position
        self.d_model = d_model
        self.embedding = tf.keras.layers.Embedding(
            input_dim=2 * max_relative_position + 1,
            output_dim=d_model
        )

    def call(self, inputs):
        """Compute relative positional encoding"""
        batch_size, seq_length = tf.shape(inputs)[0], tf.shape(inputs)[1]

        # Create relative position matrix
        range_vec = tf.range(seq_length)
        distance_mat = range_vec[tf.newaxis, :] - range_vec[:, tf.newaxis]

        # Clip distances
        distance_mat_clipped = tf.clip_by_value(
            distance_mat,
            -self.max_relative_position,
            self.max_relative_position
        )

        # Shift values to be positive
        final_mat = distance_mat_clipped + self.max_relative_position

        # Get embeddings
        embeddings = self.embedding(final_mat)

        # Add to inputs (broadcast across batch)
        return inputs + embeddings

Hybrid Positional Encoding

Combines multiple positional encoding techniques:

class HybridPositionalEncoding(tf.keras.layers.Layer):
    def __init__(self, max_length, d_model):
        super(HybridPositionalEncoding, self).__init__()
        self.sinusoidal_pe = sinusoidal_positional_encoding(max_length, d_model)
        self.learned_pe = LearnedPositionalEncoding(max_length, d_model)

    def call(self, inputs):
        """Combine sinusoidal and learned positional encoding"""
        seq_length = tf.shape(inputs)[1]

        # Get sinusoidal encoding
        sinusoidal = self.sinusoidal_pe[:seq_length, :]
        sinusoidal = tf.expand_dims(sinusoidal, axis=0)  # Add batch dimension

        # Get learned encoding
        learned = self.learned_pe(inputs)

        # Combine (can use different weights)
        return inputs + 0.5 * sinusoidal + 0.5 * learned

Positional Encoding in Transformers

Standard Transformer Implementation

from tensorflow.keras.layers import LayerNormalization, Dropout, Dense

class TransformerBlock(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff, max_length, dropout_rate=0.1):
        super(TransformerBlock, self).__init__()
        self.mha = tf.keras.layers.MultiHeadAttention(
            num_heads=num_heads,
            key_dim=d_model
        )
        self.ffn = tf.keras.Sequential([
            Dense(dff, activation='relu'),
            Dense(d_model)
        ])

        self.layernorm1 = LayerNormalization(epsilon=1e-6)
        self.layernorm2 = LayerNormalization(epsilon=1e-6)

        self.dropout1 = Dropout(dropout_rate)
        self.dropout2 = Dropout(dropout_rate)

        # Positional encoding
        self.pos_encoding = sinusoidal_positional_encoding(max_length, d_model)

    def call(self, x, training, mask=None):
        seq_len = tf.shape(x)[1]

        # Add positional encoding
        x += self.pos_encoding[:seq_len, :]

        # Multi-head attention
        attn_output, _ = self.mha(x, x, x, mask)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(x + attn_output)

        # Feed-forward network
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        out2 = self.layernorm2(out1 + ffn_output)

        return out2

Complete Transformer Model with Positional Encoding

class Transformer(tf.keras.Model):
    def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
                 target_vocab_size, max_length, dropout_rate=0.1):
        super(Transformer, self).__init__()

        # Embedding layers
        self.token_embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
        self.pos_encoding = sinusoidal_positional_encoding(max_length, d_model)

        # Encoder
        self.encoder_layers = [
            TransformerBlock(d_model, num_heads, dff, max_length, dropout_rate)
            for _ in range(num_layers)
        ]

        # Decoder
        self.decoder_embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
        self.decoder_layers = [
            TransformerBlock(d_model, num_heads, dff, max_length, dropout_rate)
            for _ in range(num_layers)
        ]

        # Final layer
        self.final_layer = Dense(target_vocab_size)

    def call(self, inputs, training):
        inp, tar = inputs

        # Encoder
        enc_output = self.token_embedding(inp)
        enc_output += self.pos_encoding[:tf.shape(inp)[1], :]

        for layer in self.encoder_layers:
            enc_output = layer(enc_output, training)

        # Decoder
        dec_output = self.decoder_embedding(tar)
        dec_output += self.pos_encoding[:tf.shape(tar)[1], :]

        for layer in self.decoder_layers:
            dec_output = layer(dec_output, training)

        # Final output
        return self.final_layer(dec_output)

Positional Encoding Variants

Rotary Positional Embedding (RoPE)

Rotary positional embedding applies a rotation to the embedding vectors based on their position:

class RotaryPositionalEmbedding(tf.keras.layers.Layer):
    def __init__(self, d_model):
        super(RotaryPositionalEmbedding, self).__init__()
        self.d_model = d_model
        self.theta = 10000.0

    def build(self, input_shape):
        # Create rotation matrix parameters
        self.inv_freq = 1.0 / (
            self.theta ** (tf.range(0, self.d_model, 2, dtype=tf.float32) / self.d_model)
        )

    def call(self, inputs, position=None):
        """Apply rotary positional embedding"""
        seq_len = tf.shape(inputs)[1]

        if position is None:
            position = tf.range(seq_len, dtype=tf.float32)[tf.newaxis, :]

        # Compute rotation angles
        sinusoid_inp = tf.einsum("i,j->ij", position, self.inv_freq)
        sin = tf.sin(sinusoid_inp)
        cos = tf.cos(sinusoid_inp)

        # Split features into two parts
        x1, x2 = tf.split(inputs, 2, axis=-1)

        # Apply rotation
        rotated = tf.concat([
            x1 * cos - x2 * sin,
            x2 * cos + x1 * sin
        ], axis=-1)

        return rotated

ALiBi (Attention with Linear Biases)

ALiBi adds linear biases to attention scores based on relative positions:

class ALiBiPositionalBias(tf.keras.layers.Layer):
    def __init__(self, num_heads, max_length):
        super(ALiBiPositionalBias, self).__init__()
        self.num_heads = num_heads
        self.max_length = max_length

        # Create slopes for each head
        self.slopes = self._get_slopes(num_heads)

    def _get_slopes(self, n):
        """Get geometric sequence of slopes"""
        def get_slopes_power_of_2(n):
            start = 2 ** (-(2 ** -(tf.math.log2(n) - 3)))
            ratio = start
            return [start * ratio ** i for i in range(n)]

        if tf.math.log2(n) % 1 == 0:
            return get_slopes_power_of_2(n)

        closest_power_of_2 = 2 ** tf.math.floor(tf.math.log2(n))
        return get_slopes_power_of_2(closest_power_of_2) + self._get_slopes(2 * closest_power_of_2)[0::2][:n-closest_power_of_2]

    def call(self, attention_scores):
        """Add ALiBi biases to attention scores"""
        seq_len = tf.shape(attention_scores)[-1]

        # Create position differences
        position = tf.range(seq_len, dtype=tf.float32)
        distance = position[tf.newaxis, :] - position[:, tf.newaxis]

        # Create bias matrix for each head
        biases = []
        for i in range(self.num_heads):
            bias = -tf.abs(distance) * self.slopes[i]
            bias = tf.expand_dims(bias, axis=0)  # Add head dimension
            biases.append(bias)

        # Stack biases for all heads
        biases = tf.stack(biases, axis=0)
        biases = tf.expand_dims(biases, axis=0)  # Add batch dimension

        # Add to attention scores
        return attention_scores + biases

T5's Relative Positional Encoding

T5 uses bucketized relative positional encodings:

class T5RelativePositionalEncoding(tf.keras.layers.Layer):
    def __init__(self, num_buckets, max_distance, d_model):
        super(T5RelativePositionalEncoding, self).__init__()
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.embedding = tf.keras.layers.Embedding(num_buckets, d_model)

    def _relative_position_bucket(self, relative_position):
        """Compute bucket for relative position"""
        ret = tf.where(relative_position < 0,
                      tf.math.abs(relative_position),
                      relative_position)

        max_exact = self.num_buckets // 2
        is_small = ret < max_exact

        val_if_large = max_exact + tf.cast(
            tf.math.log(tf.cast(ret, tf.float32) / max_exact) /
            tf.math.log(self.max_distance / max_exact) *
            (self.num_buckets - max_exact),
            tf.int32
        )
        val_if_large = tf.minimum(val_if_large, self.num_buckets - 1)

        return tf.where(is_small, ret, val_if_large)

    def call(self, inputs):
        """Add T5 relative positional encoding"""
        batch_size, seq_length = tf.shape(inputs)[0], tf.shape(inputs)[1]

        # Create relative position matrix
        range_vec = tf.range(seq_length)
        distance_mat = range_vec[tf.newaxis, :] - range_vec[:, tf.newaxis]

        # Compute buckets
        buckets = self._relative_position_bucket(distance_mat)
        buckets = tf.stop_gradient(buckets)  # Don't train the bucket function

        # Get embeddings
        embeddings = self.embedding(buckets)

        # Add to inputs
        return inputs + embeddings

Positional Encoding Applications

Natural Language Processing

Machine Translation

# Transformer for machine translation with positional encoding
transformer = Transformer(
    num_layers=6,
    d_model=512,
    num_heads=8,
    dff=2048,
    input_vocab_size=8500,
    target_vocab_size=8000,
    max_length=100,
    dropout_rate=0.1
)

Text Generation

# GPT-like model with positional encoding
class GPT(tf.keras.Model):
    def __init__(self, vocab_size, d_model, num_heads, num_layers, max_length):
        super(GPT, self).__init__()
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
        self.pos_encoding = sinusoidal_positional_encoding(max_length, d_model)

        self.blocks = [
            TransformerBlock(d_model, num_heads, d_model*4, max_length)
            for _ in range(num_layers)
        ]
        self.layernorm = LayerNormalization(epsilon=1e-6)
        self.dense = Dense(vocab_size)

    def call(self, inputs, training=False):
        seq_len = tf.shape(inputs)[1]

        # Embed tokens and add positional encoding
        x = self.token_embedding(inputs)
        x += self.pos_encoding[:seq_len, :]

        # Transformer blocks
        for block in self.blocks:
            x = block(x, training)

        # Final layer
        x = self.layernorm(x)
        return self.dense(x)

Computer Vision

Vision Transformer (ViT)

# Vision Transformer with positional encoding
class VisionTransformer(tf.keras.Model):
    def __init__(self, image_size, patch_size, num_classes, d_model, num_heads, num_layers):
        super(VisionTransformer, self).__init__()
        num_patches = (image_size // patch_size) ** 2

        # Patch embedding
        self.patch_embedding = tf.keras.layers.Conv2D(
            d_model,
            kernel_size=patch_size,
            strides=patch_size
        )

        # Class token
        self.class_token = self.add_weight(
            "class_token",
            shape=(1, 1, d_model)
        )

        # Positional encoding
        self.pos_encoding = sinusoidal_positional_encoding(num_patches + 1, d_model)

        # Transformer blocks
        self.blocks = [
            TransformerBlock(d_model, num_heads, d_model*4, num_patches + 1)
            for _ in range(num_layers)
        ]

        # Classification head
        self.mlp_head = tf.keras.Sequential([
            LayerNormalization(epsilon=1e-6),
            Dense(d_model, activation='tanh'),
            Dense(num_classes)
        ])

    def call(self, inputs, training=False):
        batch_size = tf.shape(inputs)[0]

        # Patch embedding
        x = self.patch_embedding(inputs)
        x = tf.reshape(x, (batch_size, -1, x.shape[-1]))

        # Add class token
        class_token = tf.broadcast_to(self.class_token, (batch_size, 1, x.shape[-1]))
        x = tf.concat([class_token, x], axis=1)

        # Add positional encoding
        x += self.pos_encoding

        # Transformer blocks
        for block in self.blocks:
            x = block(x, training)

        # Classification
        class_token = x[:, 0]
        return self.mlp_head(class_token)

Image Captioning

# Image captioning with positional encoding
class ImageCaptioningModel(tf.keras.Model):
    def __init__(self, vocab_size, d_model, num_heads, num_layers, max_length):
        super(ImageCaptioningModel, self).__init__()

        # Image encoder (CNN)
        self.cnn = tf.keras.applications.EfficientNetB0(
            include_top=False,
            pooling='avg'
        )

        # Text decoder
        self.embedding = tf.keras.layers.Embedding(vocab_size, d_model)
        self.pos_encoding = sinusoidal_positional_encoding(max_length, d_model)

        self.blocks = [
            TransformerBlock(d_model, num_heads, d_model*4, max_length)
            for _ in range(num_layers)
        ]

        # Output projection
        self.dense = Dense(vocab_size)

    def call(self, inputs, training=False):
        images, captions = inputs

        # Encode images
        image_features = self.cnn(images)
        image_features = tf.expand_dims(image_features, axis=1)

        # Embed captions and add positional encoding
        x = self.embedding(captions)
        seq_len = tf.shape(x)[1]
        x += self.pos_encoding[:seq_len, :]

        # Combine image features and text
        x = tf.concat([image_features, x], axis=1)

        # Transformer blocks
        for block in self.blocks:
            x = block(x, training)

        # Output projection
        return self.dense(x)

Speech Processing

# Speech recognition with positional encoding
class SpeechRecognitionModel(tf.keras.Model):
    def __init__(self, vocab_size, d_model, num_heads, num_layers, max_length):
        super(SpeechRecognitionModel, self).__init__()

        # Audio encoder
        self.audio_encoder = tf.keras.Sequential([
            tf.keras.layers.Conv1D(64, 3, activation='relu', input_shape=(None, 80)),
            tf.keras.layers.MaxPooling1D(2),
            tf.keras.layers.Conv1D(128, 3, activation='relu'),
            tf.keras.layers.MaxPooling1D(2),
            tf.keras.layers.Conv1D(d_model, 3, activation='relu'),
            tf.keras.layers.GlobalAveragePooling1D()
        ])

        # Text decoder
        self.embedding = tf.keras.layers.Embedding(vocab_size, d_model)
        self.pos_encoding = sinusoidal_positional_encoding(max_length, d_model)

        self.blocks = [
            TransformerBlock(d_model, num_heads, d_model*4, max_length)
            for _ in range(num_layers)
        ]

        # Output projection
        self.dense = Dense(vocab_size)

    def call(self, inputs, training=False):
        audio, text = inputs

        # Encode audio
        audio_features = self.audio_encoder(audio)
        audio_features = tf.expand_dims(audio_features, axis=1)

        # Embed text and add positional encoding
        x = self.embedding(text)
        seq_len = tf.shape(x)[1]
        x += self.pos_encoding[:seq_len, :]

        # Combine audio features and text
        x = tf.concat([audio_features, x], axis=1)

        # Transformer blocks
        for block in self.blocks:
            x = block(x, training)

        # Output projection
        return self.dense(x)

Positional Encoding Research

Key Papers

  1. "Attention Is All You Need" (Vaswani et al., 2017)
    • Introduced sinusoidal positional encoding
    • Demonstrated effectiveness in Transformer architecture
    • Foundation for modern positional encoding techniques
  2. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" (Devlin et al., 2019)
    • Used learned positional embeddings
    • Demonstrated effectiveness in large-scale pre-training
    • Foundation for modern language models
  3. "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer" (Raffel et al., 2020)
    • Evaluated different positional encoding schemes
    • Introduced T5's relative positional encoding
    • Comprehensive evaluation across NLP tasks
  4. "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" (Press et al., 2022)
    • Introduced ALiBi (Attention with Linear Biases)
    • Demonstrated ability to extrapolate to longer sequences
    • Improved performance on long-range tasks
  5. "RoFormer: Enhanced Transformer with Rotary Position Embedding" (Su et al., 2021)
    • Introduced rotary positional embedding (RoPE)
    • Demonstrated improved performance and extrapolation
    • Widely adopted in modern language models

Positional Encoding Best Practices

Implementation Guidelines

AspectRecommendationNotes
Encoding TypeSinusoidal for general useWorks well in most cases
Sequence LengthSet max_length appropriatelyConsider task requirements
DimensionMatch embedding dimensionTypically 512-1024 for transformers
InitializationProper initialization for learned PEsCritical for stable training
NormalizationNormalize embeddings if neededCan improve training stability
ExtrapolationConsider ALiBi or RoPE for long sequencesBetter for length generalization
Hybrid ApproachesCombine multiple techniquesCan capture different positional aspects

Training Considerations

  • Sequence Length: Choose appropriate max_length for your task
  • Batch Processing: Ensure consistent sequence lengths in batches
  • Memory Usage: Positional encodings add minimal memory overhead
  • Training Stability: Proper initialization prevents training issues
  • Learning Rate: May need adjustment for learned positional encodings
  • Regularization: Consider dropout for learned positional encodings
  • Extrapolation: Test model's ability to handle longer sequences

Optimization Techniques

# Efficient positional encoding implementations

# Pre-compute positional encodings for fixed lengths
max_length = 1024
d_model = 512
precomputed_pe = sinusoidal_positional_encoding(max_length, d_model)

# Use in model
def add_positional_encoding(inputs):
    seq_len = tf.shape(inputs)[1]
    return inputs + precomputed_pe[:seq_len, :]

# Memory-efficient implementation for very long sequences
def memory_efficient_pe(max_length, d_model):
    """Generate positional encoding on-the-fly for long sequences"""
    def pe_for_length(seq_len):
        position = tf.range(seq_len, dtype=tf.float32)[:, tf.newaxis]
        div_term = tf.exp(tf.range(0, d_model, 2, dtype=tf.float32) *
                         -(tf.math.log(10000.0) / d_model))

        pe = tf.zeros((seq_len, d_model))
        pe[:, 0::2] = tf.sin(position * div_term)
        pe[:, 1::2] = tf.cos(position * div_term)
        return pe

    return pe_for_length

Positional Encoding Analysis

Mathematical Properties

Sinusoidal Encoding Properties

  1. Periodicity: Each dimension has a different period $$ T_i = 2\pi \cdot 10000^{2i/d_{\text{model}}} $$
  2. Linear Relationships: Allows model to learn relative positions $$ PE_{pos+k} = PE_ \cdot R_k + PE_k $$ where $R_k$ is a rotation matrix
  3. Bounded Values: All values are in -1, 1 range
  4. Unique Representation: Each position has a unique encoding

Relative Position Advantages

  • Translation Invariance: Relative positions are translation-invariant
  • Generalization: Better generalization to unseen sequence lengths
  • Efficiency: Can be computed on-the-fly for arbitrary lengths
  • Extrapolation: Better ability to handle longer sequences

Positional Encoding Visualization

import matplotlib.pyplot as plt
import seaborn as sns

def analyze_positional_encoding(pe, title="Positional Encoding Analysis"):
    """Analyze and visualize positional encoding properties"""
    fig, axes = plt.subplots(2, 2, figsize=(15, 12))

    # Plot encoding patterns
    sns.heatmap(pe.numpy().T, ax=axes[0, 0], cmap='viridis')
    axes[0, 0].set_title('Positional Encoding Patterns')
    axes[0, 0].set_xlabel('Position')
    axes[0, 0].set_ylabel('Dimension')

    # Plot first few dimensions
    for i in range(4):
        axes[0, 1].plot(pe.numpy()[:, i], label=f'Dim {i}')
    axes[0, 1].set_title('First 4 Dimensions')
    axes[0, 1].set_xlabel('Position')
    axes[0, 1].set_ylabel('Value')
    axes[0, 1].legend()

    # Plot autocorrelation
    autocorr = np.correlate(pe.numpy().flatten(), pe.numpy().flatten(), mode='full')
    autocorr = autocorr[len(autocorr)//2:]
    axes[1, 0].plot(autocorr[:100])
    axes[1, 0].set_title('Autocorrelation')
    axes[1, 0].set_xlabel('Lag')
    axes[1, 0].set_ylabel('Correlation')

    # Plot frequency spectrum
    fft = np.abs(np.fft.fft(pe.numpy(), axis=0))
    axes[1, 1].plot(fft[:50, 0])
    axes[1, 1].set_title('Frequency Spectrum (First Dimension)')
    axes[1, 1].set_xlabel('Frequency')
    axes[1, 1].set_ylabel('Magnitude')

    plt.suptitle(title)
    plt.tight_layout()
    plt.show()

# Analyze sinusoidal positional encoding
analyze_positional_encoding(pos_encoding)

Future Directions

  • Adaptive Positional Encoding: Positional encodings that adapt to input content
  • Content-Aware Positional Encoding: Positional encodings that consider input content
  • Hierarchical Positional Encoding: Multi-level positional information
  • Neuromorphic Positional Encoding: Biologically-inspired positional representations
  • Quantum Positional Encoding: Positional encodings for quantum computing
  • Cross-Modal Positional Encoding: Positional encodings for multimodal data
  • Dynamic Positional Encoding: Positional encodings that change during training
  • Explainable Positional Encoding: More interpretable positional representations

External Resources